

Bioeduca: Journal of Biology Education

http://journal.walisongo.ac.id/index.php/bioeduca ISSN 2714-8009 (print), 2715-7490 (online)

> Volume 7, Nomor 2, Tahun 2025 Hal. 117 – 130

Relationship between Critical Thinking Skills and Creative Thinking Skills with the Biology Learning Outcomes of Grade XI Students at UPT SMAN 1 Wajo

Hasvika Yanti^{*}, Andi Badli Rompegading, Muhammad Nasir

Program Studi Pendidikan Biologi, Fakultas Ilmu Pendidikan, Universitas Puangrimaggalatung *Email: hasvikayanti@gmail.com

Article Information	ABSTRAK
Submited: 28 – 08 – 2025	Penelitian ini bertujuan untuk mengetahui hubungan antara
Accepted: 27 – 10 – 2025	kemampuan berpikir kritis dan keterampilan berpikir kreatif dengan
Published: 31 – 10 – 2025	hasil belajar biologi siswa kelas XI di UPT SMAN 1 Wajo. Penelitian ini
	didasarkan pada tuntutan pembelajaran abad ke-21 yang menekankan
	pada pengembangan kemampuan berpikir tingkat tinggi, seperti
	berpikir kritis dan kreatif, yang dalam mata pelajaran Biologi. Penelitian
	ini menggunakan metode deskriptif-kuantitatif. Populasi penelitian
	terdiri dari siswa kelas XI UPT SMAN 1 Wajo, dan sampel diambil
	secara <i>purposive</i> sampling sebanyak 31 siswa. Hasil penelitian
	menunjukkan bahwa terdapat hubungan positif dan signifikan antara
	kemampuan berpikir kritis dan keterampilan berpikir kreatif dengan
	hasil belajar biologi siswa dengan nilai signifikansi 0,000 < 0,05 dan
	nilai koefisien korelasi 0,972 dengan kategori korelasi sangat kuat.
	Penelitian ini, dapat disimpulkan bahwa secara simultan kemampuan
	berpikir kritis dan keterampilan berpikir kreatif yang lebih tinggi
	berperan penting dalam meningkatkan hasil belajar biologi siswa.
	Kata kunci: Berpikir Kritis; Berpikir Kreatif; Hasil Belajar Biologi.
Publisher	ABSTRACT
Program Studi Pendidikan	This study aims to determine the relationship between critical thinking
Biologi, Fakultas Sains	skills and creative thinking skills with the biology learning outcomes of
dan Teknologi, UIN	grade XI students at UPT SMAN 1 Wajo. This study is based on the
Walisongo Semarang	demands of 21st century learning, which emphasizes the development
	of higher-order thinking skills, such as critical and creative thinking, in
	biology lessons. This study used a descriptive-quantitative method.
	The research population consisted of 11th grade students at UPT
	SMAN 1 Wajo, and the sample was taken using purposive sampling of
	31 students. The results showed a positive and significant relationship
	between critical thinking skills and creative thinking skills with students'
	biology learning outcomes, with a significance value of 0.000 < 0.05
	and a correlation coefficient value of 0.972, which is classified as a
	very strong correlation. This study concluded that simultaneously,
	higher critical thinking skills and creative thinking skills play an
	important role in improving students' biology learning outcomes.
	Keywords: Critical Thinking; Creative Thinking; Biology Learning
	Outcomes.

Copyright ©2025, Bioeduca: Journal of Biology Education

INTRODUCTION

The 21st century is commonly referred to as the age of science and technology, as it demands the mastery of various abilities and competencies. The education

system of the 21st century places emphasis on creativity, critical thinking, collaboration, communication skills, social skills, and character development. As a result, students must possess at least four essential skills required for the workforce (Hafiza et al., 2022). Schools are therefore expected to align their educational patterns with the demands of the professional world. According to Mu'minah (2021), 21st-century learning seeks to prepare individuals who are ready to face the challenges of this era. Syamina et al. (2021) further define 21st-century learning as a process of gaining knowledge through methods intended to enhance cognitive abilities, moral development, and diverse skills such as inquiry, creativity, problem-solving, and the ability to apply learned concepts through educational experiences.

The 21st century demands human resources capable of higher-order thinking skills such as critical and creative thinking. Based on preliminary observations conducted at SMAN 1 Wajo, students' levels of critical and creative thinking were found to be varied—some sufficiently developed, while others require further improvement. According to Ningsih & Rizki (2024), critical thinking is a crucial aspect of education that helps students develop the ability to analyze, evaluate, and synthesize information. As stated by Yulianis & Suryanti (2023), critical thinking is one of the essential competencies needed in the 21st century. Their research emphasizes that critical thinking involves the use of deep reasoning to obtain accurate and accountable information.

In addition, Muis (2021) defines creative thinking as the ability to generate something new—whether in the form of ideas or tangible products—derived either from innate or acquired traits, or a combination of both, that are distinct from previously existing work. It is therefore important for teachers to cultivate students' creativity through methods such as implementing creative thinking patterns during lessons and assigning challenges that stimulate creative problem-solving. Rahman (2021) adds that learning outcomes represent the results achieved by students after undergoing learning activities, which may include knowledge, attitudes, and skills.

In the context of biology education, critical thinking enables students to analyze and logically evaluate information, while creative thinking allows them to generate new ideas for understanding complex biological concepts. Learning outcomes are influenced not only by academic factors but also by students' cognitive approaches in addressing learning materials (Maria et al., 2023). Sari (2023) found that students with certain cognitive skills are likely to possess other related skills—for example, students who demonstrate critical thinking often also show creative thinking abilities. Similarly, Kamelia et al. (2023) reported a significant relationship between creative and critical thinking skills and improved biology learning outcomes. Students with creative thinking skills tend to better connect new information with prior knowledge, while those with critical thinking skills can evaluate information objectively and logically. Safitri & Japa (2023) further found a positive and significant correlation between creative thinking ability and biology learning outcomes, with a contribution value of 9.98%.

Although previous studies have shown a positive relationship between critical

and creative thinking skills with learning outcomes, none have examined both skills simultaneously in a more specific context. For instance, Wahyuni (2023), in her study titled "The Relationship Between Critical and Creative Thinking Skills and Problem-Solving Ability," focused solely on problem-solving, not learning outcomes. Meanwhile, Ramadhani (2018), who investigated "The Relationship Between Study Habits and Biology Learning Outcomes among Grade IX Students at State High Schools in Tampan District," centered on learning outcomes but did not investigate the role of critical or creative thinking.

Therefore, this study aims to analyze the relationship between critical thinking ability and creative thinking skills with students' biology learning outcomes simultaneously. The findings are expected to provide deeper insight into the role of these cognitive abilities in improving the quality of education, as reflected in students' learning achievements. Based on the aforementioned background, this research was conducted to determine the relationship between critical thinking ability and creative thinking skill and biology learning outcomes. The study is titled:"The Relationship Between Critical Thinking Ability and Creative Thinking Skills and Biology Learning Outcomes of Students at UPT SMAN 1 Wajo."

METHODS

This study employs a survey-based research design with an analytical-descriptive approach. The descriptive method involves sampling from a population in which data are collected through tests and questionnaires. The research sample was determined using a purposive sampling technique, which entails selecting samples based on specific considerations due to the large population size. As stated by Junaidi (2017), if a research population consists of fewer than 100 individuals, the entire population should be used as the sample. However, if the population exceeds 100 individuals, then a minimum of 10–25% of the total population should be selected as the sample.

The variables in this study consist of independent variables (X), namely critical thinking ability (X1), which was assessed using open-ended test questions (essay form). The scoring of each item was based on a rubric developed from the indicators of critical thinking skills, adapted from Ennis (2018). The questions were designed to measure students' critical thinking ability in relation to biology learning outcomes. In contrast, creative thinking skills were measured using a questionnaire.

A questionnaire is a data collection technique administered by providing respondents with a set of written questions or statements for them to answer (Sugiyono, 2017). The questionnaire in this study was distributed to obtain self-reflection data from students regarding their creative thinking skills and was structured using a Likert scale. Each item on the Likert scale includes responses ranging from strongly positive to strongly negative, categorized as follows: Strongly Agree (SA) = 5, Agree (A) = 4, Neutral (N) = 3, Disagree (D) = 2, and Strongly Disagree (SD) = 1 (Arikunto, 2010).

The dependent variable (Y) in this study is students' learning outcomes. Data on learning outcomes were collected through documentation, which involved using preexisting data available in the school archives. The values recorded were transformed from students' answers to summative tests administered by the biology subject teacher. The data analysis techniques used in this study include: 1). Descriptive Statistical Analysis, descriptive statistics were employed to determine scores obtained after the completion of the test and questionnaire. The statistical techniques used include frequency distribution, mean, median, mode, variance, standard deviation, range, minimum value, and maximum value, aided by SPSS version 25.0. 2). Analysis of Critical and Creative Thinking Skills Data, scoring for critical thinking ability was conducted using a rubric aligned with the test instrument grid based on the defined indicators, with a score range of 0 to 4. Meanwhile, scores for the creative thinking skill instrument were based on the Likert scale. 3). Analysis of Biology Learning Outcomes Data, students' biology learning outcomes were categorized into five levels: very high, high, medium, low, and very low. 4). Inferential Statistical Analysis, this analysis involved testing the correlation or relationship between variables to examine the research hypotheses.

Before conducting inferential statistical tests, a prerequisite analysis was performed to determine whether parametric or non-parametric tests should be used. a) Prerequisite Analysis Test. This test aims to determine the type of statistical analysis to be used. Parametric analysis can be applied if the data meet the necessary assumptions, namely normality and linearity. b) Normality Test. The normality of the data was tested using the Shapiro-Wilk test, as it is appropriate when the sample size is fewer than 50. c) Linearity Test. This test was conducted to determine whether the relationship between two variables is linearly significant. Linearity is indicated by the Sig. value of the deviation from linearity at a 5% significance level. d) Hypothesis Testing. Hypothesis testing was performed to determine whether there was a significant relationship between the independent variables—critical thinking ability (X1) and creative thinking skill (X2)—and the dependent variable, biology learning outcomes (Y). The correlation analysis used was the Pearson Product-Moment correlation test. The interpretation guideline for the correlation coefficient (r) values is presented in Table 1.

Table 1. Determination of Correlation Level

Coefficient Interval
Very Weak
Weak
Moderate
Strong
Very Strong

Source: Jainuddin (2016)

To determine the simultaneous relationship among the three variables, multiple linear regression analysis was employed. Multiple regression is used to measure the strength and contribution of two independent variables (X1 and X2) on the dependent variable (Y) collectively. To assess the magnitude of the relationships among these variables, the multiple correlation test in SPSS version 25 was utilized to facilitate the

analysis process. The significance of the multiple regression model can be determined by comparing the calculated F-value (F_{hitung}) with the critical F-value (F_{tabel}), or by comparing the significance value (Sig.) with the predetermined alpha level (α). In this study, the researcher opted to compare the Sig. value to an alpha level of 0.05 to determine the significance of the regression model. The criteria for determining the significance of the regression model based on the SPSS output are as follows: If the Sig. FChange value is greater than or equal to $\alpha = 0.05$ ($0.05 \le Sig$. FChange), the regression model is not significant. If the Sig. FChange value is less than or equal to $\alpha = 0.05$ ($0.05 \ge Sig$. FChange), the regression model is significant.

RESULT AND DISCUSSION

Result

1. Descriptive Analysis

a. Descriptive Analysis of Students' Critical Thinking Ability

The descriptive statistical analysis yielded the following measures for students' critical thinking ability: a mean score of 52.00, a standard deviation of 2.103, a median of 52.00, a mode of 52.00, a minimum score of 46.00, and a maximum score of 55.00.


Tabel 2. Frequency Distribution of Critical Thinking Ability

•		•
Score Interval	Score Interval	Score Interval
15	48,4%	Very High
10	32,3%	High
4	12,9%	Moderate
1	3,2%	Low
1	3,2%	Very Low
31	100%	
	15 10 4 1	15 48,4% 10 32,3% 4 12,9% 1 3,2% 1 3,2%

Source: Results of Critical Thinking Ability Test

From Table 2, it can be observed that: (1). 15 students (48.4%) demonstrated very high critical thinking ability, (2).10 students (32.3%) showed high ability, (3). 4 students (12.9%) displayed moderate ability, (4). 1 student (3.2%) showed low ability, and (5). 1 student (3.2%) demonstrated very low critical thinking ability.

Therefore, it can be concluded that the overall critical thinking ability of Grade XI students at UPT SMA Negeri 1 Wajo falls within the "High" category. The frequency histogram of critical thinking ability is shown in Figure 1.

Figure 1. Histogram of Critical Thinking Ability

b. Descriptive Analysis of Students' Creative Thinking Skills

The descriptive statistical analysis for creative thinking skills yielded the following measures: a mean score of 114.451, a standard deviation of 3.364, a median of 114.00, a mode of 112.00, a minimum score of 109.00, and a maximum score of 122.00. The frequency distribution is presented in Table 3.

rable 3. Frequer	icy distribution c	of Creative I ninkin	g Skills
Score Interval	Score Interval	Score Interval	Score Interval
 119 – 122	4	12,9%	Very High
115 – 118	11	35,5%	High
115 – 114	13	41,9%	Moderate
112 - 114	2	6,5%	Low
≤ 109	2	6,5%	Very Low
Jumlah Total	31	100%	

Table 3. Frequency Distribution of Creative Thinking Skills

Based on Table 3, it is evident that: (1). 4 students (12.9%) had very high creative thinking skills, (2). 11 students (35.5%) had high skills, (3). 13 students (41.9%) demonstrated moderate skills, (4). 2 students (6.5%) showed low skills, and (5). 2 students (6.5%) displayed very low skills. Thus, the overall creative thinking skills of Grade XI students at UPT SMA Negeri 1 Wajo can be categorized as "Moderate." The frequency histogram of creative thinking skills is presented in Figure 2.

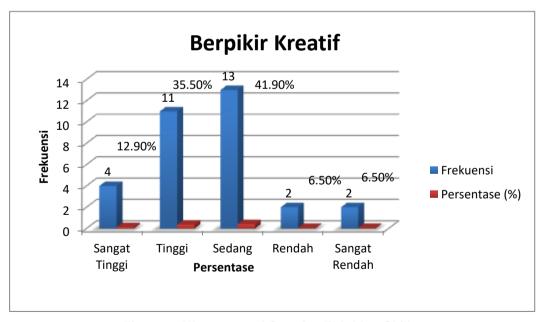


Figure 2. Histogram of Creative Thinking Skills

c. Descriptive Analysis of Biology Learning Outcomes

The descriptive statistical analysis for students' biology learning outcomes revealed the following: a mean score of 91.645, a standard deviation of 5.462, a

median of 93.00, a mode of 95.00, a minimum score of 77.00, and a maximum score of 98.00. The frequency distribution is shown in Table 4..

Tabel 4. Frequency Distribution of Biology Learning Outcomes (Grade XI, SMA Negeri 1 Wajo)

Score Range	Score Range	Score Range	Score Range
96 – 98	8	25.8%	Very High
93 - 95	8	25.8%	High
90 - 92	7	22.6%	Moderate
84 - 89	5	16.1%	Low
≤83	3	9.7%	Very Low
Jumlah Total	31	100%	

Source: Biology Learning Outcomes of Students at SMA Negeri 1 Wajo

Based on Table 4, most students achieved biology learning outcomes in the "High" and "Very High" categories, each with a percentage of 25.8% (8 students). Additionally, 22.6% of students showed "Moderate" outcomes (7 students), 16.1% were in the "Low" category (5 students), and 9.7% (3 students) fell in the "Very Low" category. This indicates that the majority of Grade XI students at UPT SMA Negeri 1 Wajo achieved high-level learning outcomes in biology. The frequency distribution histogram for biology learning outcomes is shown in Figure 3.

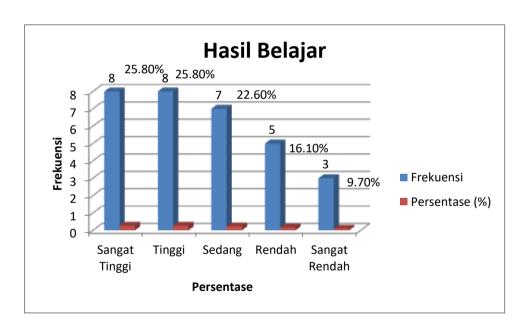


Figure 3. Histogram of Biology Learning Outcomes

2. Inferential Analysis

- a. Normality test
- (1) Normality Test for Critical Thinking Ability and Biology Learning Outcomes

Based on the significance value in Table 5, it can be concluded that the residual values are normally distributed, as indicated by a probability value of Sig. = 0.685, which is greater than 0.05. Therefore, the data meet the normality assumption.

Tabel 5. Normality Test for Critical Thinking Ability and biology Learning Outcomes

Tests of Normality

Kolmogorov-Smirnov ^a				Shapiro-	Wilk	
S	Statistic	Df	Sig	Statistic	Df	Sig
KRITIS	.098	31	.200*	.976	31	.685
HASIL	.140	31	.126	.962	31	.336

(2) Normality Test for Creative Thinking Skills and Biology Learning Outcomes

Tabel 6. Normality Test for Creative Thinking Skills and Biology Learning Outcomes

Kolmogorov-Smirnov ^a				Shapiro-	Wilk	
St	atistic	Df	Sig	Statistic	Df	Sig
KREATIF	.108	31	.200	.946	31	.124
HASIL	.140	31	.126	.962	31	.336

From Table 6, the significance value of 0.124 is greater than 0.05, indicating that the data are normally distributed.

b. Linearity Test

(1) Linearity Test between Critical Thinking Ability and Biology Learning Outcommes

Tabel 7. Linearity Test between Critical Thinking Ability and Biology Learning Outcomes

	,	.	,	37 =			_
			Sum of Squares	df	Mean Square	F	Sig.
Hasil Belajar * Kritis	Between Groups	(Combined)	250.121	8	31.265	1.066	421
		Linearity	28.905	1	28.905	986	332
		Deviation from Linearity	221.215	7	31.602	1.078	410
		Within Groups	644.976	22	29.317		
		Total	895.097	30			

Based on Table 7, the Deviation from Linearity value is 0.410, which is greater than 0.05. Therefore, it can be concluded that there is a significant linear relationship between critical thinking ability and biology learning outcomes.

(2) Linearity Test between Creative Thinking Skills and Biology Learning Outcomes
As shown in Table 8, the Deviation from Linearity value is 0.708, which is

greater than 0.05. Thus, it can be concluded that there is a significant linear relationship between creative thinking skills and biology learning outcomes.

Tabel 8. Linearity Test between Creative Thinking Skills and Biology Learning Outcomes

			Sum of Squares	df	Mean Square	F	Sig.
Hasil Belajar * Kreatif	Between Groups	(Combined)	274.466	12	22.872	663	763
		Linearity	2.151	1	2.151	62	806
		Deviation from Linearity	272.315	11	24.756	718	708
		Within Groups	620.631	18	34.479		
		Total	895.097	30			

c. Hypothesis Testing

(1) Relationship between Critical Thinking Ability and Biology Learning Outcomes of Grade XI Students at SMA Negeri 1 Wajo

Tabel 9. Correlation between Critical Thinking Ability and Learning Outcomes

Correlations

		Critical Thinking	Learning Outcomes
Critical Thinking Critical Thinking	Pearson Correlation	1	972**
, and the second	Sig. (2-tailed)		0
	N	31	31
Learning Outcomes	Pearson Correlation	.972**	1
	Sig. (2-tailed)	0	
N		31	31

^{**.} Correlation is significant at the 0.01 level (2-tailed).

As shown in Table 9, the significance value is 0.000, which is less than 0.05. This indicates a significant and strong correlation between critical thinking ability and biology learning outcomes of students at SMA Negeri 1 Wajo.

(2) Relationship between Creative Thinking Skills and Biology Learning Outcomes among Grade XI Students of SMA Negeri 1 Wajo

Tabel 10. Correlation between Creative Thinking Skills and Learning Outcomes

Correlations

		Creative Thinking	Learning Outcomes
Creative Thinking	Pearson Correlation	1	.716**
	Sig. (2-tailed)		0
	N	31	31

Bioeduca: Journal of Biology Education Vol. 7, No. 2 (2025), Hal. 117 - 130

Learning Outcomes	Pearson Correlation	.716**	1
	Sig. (2-tailed)	0	
N		31	31

^{**.} Correlation is significant at the 0.01 level (2-tailed).

Table 10 shows a significance value of 0.000, which is less than 0.05. Thus, there is a significant relationship between creative thinking skills and biology learning outcomes among students at UPT SMA Negeri 1 Wajo, with a strong degree of correlation.

(3) Significance of the Relationship between Critical Thinking Ability and Creative Thinking Skills and Biology Learning Outcomes among Grade XI Students of SMA Negeri 1 Wajo

Tabel 11. F-Test Table

Model		Squares	Df	Mean Square	F	Sig.
1	Regression	414.856	2	207.428	17.327	.000b
	Residual	335.206	28	11.972		
	Total	750.062	30			

a. Dependent Variable: Y

Tabel 12. Relationship between Critical Thinking Ability, Creative Thinking Skills, and Learning Outcomes

	Model	Unstandardized Coefficients		Standardized Coefficients	Т	Sig.
	В		Std. Error	Beta		
1	Constant)	972.019	15.657		7.921	0
	X.1	782	191	838	4.097	0
	X.2	184	300	125	612	546

a. Dependent Variable: Y

The two tables above show a significance value of 0.000, which is less than 0.05, and indicate that the calculated F-value (17.327) is greater than the F-table value (7.921). Thus, there is a significant combined relationship between critical thinking ability and creative thinking skills and biology learning outcomes at UPT SMA Negeri 1 Wajo, with a strong degree of correlation.

Discussion

The results of this study show that there is a positive and significant correlation between critical thinking ability and creative thinking skills with biology learning outcomes among grade XI students at UPT SMA Negeri 1 Wajo. The relationship

b. Predictors: (Constant), X.2, X.1

between critical thinking ability and learning outcomes (r = 0.972) is stronger than the relationship between creative thinking skills and learning outcomes (r = 0.716).

This difference in correlation strength can be explained through constructivist learning theory, which emphasizes that learning occurs when learners actively construct knowledge through experience and reflection. In biology learning, critical thinking plays a vital role in analyzing concepts, identifying misconceptions, and drawing conclusions based on scientific evidence. This aligns with the cognitive domain of Bloom's Taxonomy, where critical thinking encompasses skills such as analysis, evaluation, and synthesis, which significantly influence students' cognitive learning outcomes.

Meanwhile, creative thinking skills are more associated with generating new ideas and innovative solutions to problems. However, their contribution to biology learning outcomes may be lower than that of critical thinking, partly due to the assessment system in schools that still prioritizes analytical and conceptual skills over innovation. These findings are consistent with studies by Safitri & Japa (2023) and Wahyuni (2023), which found that critical thinking has a stronger association with biology learning outcomes compared to creative thinking.

This study is limited by its small sample size (31 students) and research context confined to a single school. Hence, the findings cannot be generalized widely. Future research is recommended to expand the sample size and employ experimental approaches or apply teaching models based on Higher Order Thinking Skills (HOTS) to further understand the role of critical and creative thinking in improving biology learning outcomes.

In conclusion, there is a significant simultaneous relationship between critical thinking ability and creative thinking skills and biology learning outcomes among grade XI students at UPT SMA Negeri 1 Wajo.

CONCLUSION AND RECOMMENDATIONS

This study shows that both critical thinking ability and creative thinking skills have a significant and positive relationship with the biology learning outcomes of grade XI students at UPT SMA Negeri 1 Wajo. Critical thinking makes a stronger contribution to learning outcomes than creative thinking because it directly involves analytical, evaluative, and logical application of biological concepts. Therefore, enhancing both critical and creative thinking skills is essential for improving biology education quality in schools. Based on the findings, the following recommendations are proposed: 1). For Biology Teachers: The results can serve as a basis for developing HOTS-based instructional strategies that encourage students to practice critical and creative thinking through biological problem analysis or real-world problem-solving tasks. 2). For Schools: Support is needed in the form of training and facilities to implement active learning environments that focus on developing higher-order thinking skills. 3). For Future Researchers: It is recommended to extend the scope of this study to larger populations, employ experimental approaches, or

incorporate other variables such as learning motivation or thinking styles to gain deeper insights into the factors influencing biology learning outcomes.

ACKNOWLEDGMENTS

The author gratefully acknowledges Allah SWT for the ease and smoothness granted throughout the research and writing process. Special thanks are extended to Dr. Andi Badli Rompegading, M.Pd., and Dr. Muhammad Nasir, M.Pd., as supervisors for their valuable guidance and feedback throughout the study. Appreciation is also given to the teachers and students of UPT SMA Negeri 1 Wajo for their cooperation and participation in this research. The author would also like to thank the lecturers of the Biology Education Program at Universitas Puangrimaggalatung for their academic support and facilities during this research. Lastly, heartfelt appreciation to family and friends for their continuous support. May this work contribute meaningfully to the enhancement of biology education in the future.

REFERENCES

- Affandy, H., Aminah, N. S., & Supriyanto, A. (2019). Analisis Keterampilan Berpikir Kritis Siswa Pada Materi Fluida Dinamis Di SMA Batik 2 Surakarta. *Jurnal Materi dan Pembelajaran Fisika* 9, 25–33.
- Andriani, R. (2019). Motivasi belajar sebagai determinan hasil belajar siswa (Learning motivation as determinant student learning outcomes). *Jurnal Pendidikan Manajemen Perkantoran 4(1),* 8086.ttps://doi.org/10.17509/jpm.v4i1. 14958
- Annisa, L., Oktaviana, C., & Habibi, A. A. (2020). Hubungan Keterampilan Berpikir Kritis Dengan Hasil Belajar Peserta Didik. *Edubiologica Jurnal Penelitian Ilmu Dan Pendidikan Biologi*, 8(1), 35. https://doi.org/10.25134/edubiologica.v8i1.233
- Ayub, S., Afifah, G., Nyoman, N., & Putu, S. (2021). Analisis Kemampuan Berpikir Kritis Peserta didik Dalam Pemecahan Masalah Fluida Dinamis. *Jurnal Hasil Kajian, Inovasi, dan Aplikasi Pendidikan Fisika*, 7, 186–192.
- Fatmawati, C.,Ramdhani, S., R. S. (2022). Kemampuan berpikir kritis matematis dan kemandirian belajar siswa SMK melalui pembelajaran E-Leraning berbantuan WhatssApp. *Jurnal PEKA (Pendidikan Matematika). 05*(02), 122–133. https://doi.org/10.37150/jp.v5i2.1557
- Sillas, E.I, Ismail, A. I. Suryani. (2024). Hubungan Berpikir Kritis Terhadap Hasil Belajar Siswa Kelas XI SMAN 3 PALOPO. *Jurnal Ilmiah Biologi.* 16(1), 20–28.
- Fatmala, Y., & Hartati, S. (2020). Pengaruh Membatik Ecoprint terhadap Perkembangan Kreativitas Seni Anak di Taman Kanak-Kanak. *Jurnal Pendidikan Tambusai.* 4, 1143–1155.
- Fauhah, H. (2021). Analisis Model Pembelajaran Make A Match terhadap Hasil Belajar Siswa. *Jurnal Pendidikan Administrasi Perkantoran. 9*, 321–334.
- Hadi, F. Z., & Fathurrohman, M. (2020). Pengembangan E-Modul Geometri berbasis Etnomatematika untuk meningkatkan kemampuan pemecahan masalah Matematis Siswa Di Sekolah Menengah Pertama. 2(1), 59–72.
- Hafiza, H., Hairida, H., Rasmawan, R., Enawaty, E., & Ulfah, M. (2022). Profil Kemampuan Berpikir Kreatif Peserta Didik Kelas XI IPA di SMAN 9 Pontianak

- pada Materi Sistem Koloid. *Edukatif: Jurnal Ilmu Pendidikan*, *4*(3), 4681–4693. https://doi.org/10.31004/edukatif.v4i3.2707
- Hidayati, A. R., Fadly, W., & Ekapti, R. F. (2021). Analisis Keterampilan Berpikir Kritis Siswa pada Pembelajaran IPA. *Jurnal Tadris IPA Indonesia*. (1), 34–48.
- Koyimah, Y. S. dan A. N. (2021). Pengaruh Penerapan Blended LEearning Dalam Model PBL Terhadap Kemampuan Berpikir Kreatif. *Jurnal Penelitian Pendidikan dan Ekonomi.* 18(02), 208–217.
- Junaidi, T. (2019). Penerapan Pendekatan Model Elicting Activities (MEAs) Dalam Pembelajaran Matematika Untuk Meningkatkan Kemampuan Berpikir Kritis Siswa SMP Junaidi. *Jurnal Sosial Humaniora Sigli.* 2(2), 10–16.
- Kamelia, B., Sari, R., Bahri, S., Jufri, A. W., Xi, K., Mipa, X. I., Xi, K., Mipa, X. I., Mataram, S., Mipa, X. I., & Instrumen, M. (2023). Hubungan Keterampilan Berpikir Kritis dengan Hasil Belajar Biologi SMA Negeri di Kota Mataram. *Journal of Classroom Action Research*. X.
- Maria, P., Wahyuningrum, E., Jamil, M. A., Nawawi, M. L., Aditia, D., Gusti, N., & Lia, A. (2023). Analisis Efektivitas Penggunaan Teknologi dalam Pendidikan Terhadap Peningkatan Hasil Belajar. *Journal On Education*. *06*(01), 1–11.
- Hutauruk M.K., Siregar Y. P, E. Y. S. (2020). Efektivitas Pembelajaran Matematika Realistik Terhadap Kemampuan Berpikir Kreatif Matematis Siswi di SMP Negeri 7 Padangsimpuan. *Mathematic Education Jurnal.* 3(1), 54–60.
- Hakim M. F, T. N. (2021). Membangun Sebuah Konsep Critical Thingking Siswa Dengan Model Pembelajaran Berbasis Discovery learning Sebagai Solusi Tantangan Dalam Pembelajaran IPS. *Jurnal Ilmu Sosial dan Budaya.* 3(1).
- Mu'minah, I. H. (2021). Study Literatur: Pembelajaran Abad-21 Melalui Pendekatan STEAM (Science, Technology, Engineering, Art, And Mathematics) Dalam Menyonsong Era Society 5.0 584–594. https://repository.radenintan.ac.id/29037/
- Muis, A. A. (2021). Efektivitas Pembelajaran PAI Secara Daring di Era Pandemi Covid-19 (Coronavirus Diseasea 2019) Terhadap Kemampuan Berpikir Kreatif Peserta Didik Di SMPN 4 Model Kota Pare-Pare. *Umpar*, *Jurnal AI-Ibrah X*(September), 69–82.
- Mulyaningsih, N., Asbari, M., & Rahmawati, R. S. (2024). Keterampilan Berpikir Kritis dan Pemecahan Masalah Mahasiswa. *Journal of Information System and Management (JISMA). 03*(01), 58–61.
- Nabillah, T., & Abadi, A. P. (2019). Faktor Penyebab Rendahnya Hasil Belajar Siswa. *Jurnal Pendidikan Unsika. 659*–663.
- Neolaka, F. (2023). Hubungan Keterampilan Berpikir Kreatif Dan Hasil Belajar Dengan Retensi Biologi Mahasiswa UPG 1945 NTT Dalam Pembelajaran Predict Observe Explain (POE). *Jurnal Alwatzikhoebillah.* 6(2),
- Ningsih, E. P., & Rizki, S. N. (2024). Peran Guru dalam Meningkatkan Keterampilan Berpikir Kritis Siswa Sekolah Dasar melalui Pembelajaran Berbasis Masalah. *Ludi Litterarri*, 1(1), 11–17. https://doi.org/10.62872/v1t00a82
- Nurjanah, & , Ucu Cahyana, N. (2021). Pengaruh Penerapan Online Project Based Learning Dan Berpikir Kreatif. *Jurnal Fakultas Keguruan dan Ilmu Pendidikan.* 17(1), 51–58.
- Nursari, B. (2020). Meningkatkan Hasil Belajar Matematika Dengan Media Konkrit Kelas II SDN 6 Baturetno Kecamatan Baturetno Tahun Pelajaran 2019/2020. SHEs: Conference Series, 3(4), 968–973. https://jurnal.uns.ac.id/shes
- Rahman, S. (2021). Pentingnya motivasi belajar dalam meningkatkan hasil belajar. *November*, 289 302. https://ejurnal.pps.ung.ac.id/index.php/psnpd/article/view/10 76

- Safitri, B. D., & Japa, L. (2023). Hubungan Keterampilan Berpikir Kreatif dengan Hasil Belajar Biologi Peserta Didik SMA Negeri di Kota Mataram. *Jurnal Ilmiah Profesi Pendidikan*. 8. 1783–1788.
- Sari, Wahyu K. W. & Mutia. P. (2023). Hubungan kemampuan berpikir kritis dan kemampuan berpikir kreatif pada pembelajaran IPA di Sekolah Dasar. *Jurnal Pendidikan Guru Sekolah Dasar*. 80–88.
- Septiningrum, D., Khasanah, N., & Khoiri, N. (2021). Development of Biology Teaching Materials of Virus Based on Socio- Scientific Issues (SSI) to Improve Student 's Critical Thinking Ability Pengembangan Bahan Ajar Biologi Materi Virus Berbasis Socio- Scientific Issues (SSI) untuk Meningkatkan Kemampu. Berpikir Kritis Siswa. *Jurnal Pendidikan MIPA*. 11(1), 87–104.
- Wahyuni, N. (2023). Hubungan Keterampilan Berpikir Kritis Dan Kreatif Terhadap Pemecahan Masalah Serta Dampaknya Pada Higher Order Thinking Skills (HOTS) Matematis Siswa Raden Intan Lampung 1444 H / 2023. https://prosiding.unma.ac.id/index.php/semnasfkip/article/view/654
- Yulianis, Y., & Suryanti. (2023). Profil Kemampuan Berpikir Kritis pada Pembelajaran Biologi Siswa Kelas XI IPA SMA PGRI Pekanbaru Tahun Ajaran 2022 / 2023. Jurnal Simki Postgraduate, 2(4), 348–358.
- Yusuf, A. Y. (2020). Pengembangan Kurikulum PAI Berbasis Multikultural (Perspektif Psikologi Pembelajaran). Jurnal Al Murabbi. May. https://doi.org/10.3 5891/amb.v4i2.1453