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Abstract	
In	 this	 work,	 we	 present	 the	 numerical	 solution	 of	 fractional	 order	 Volterra–
Fredholm	 integro-differential	 equations	 using	 the	 second	 kind	 of	 Chebyshev	
collocation	technique.	First,	we	transformed	the	problem	into	a	system	of	linear	
algebraic	equations,	which	are	 then	solved	using	matrix	 inversion	 to	obtain	 the	
unknown	 constants.	 Furthermore,	 numerical	 examples	 are	 used	 to	 outline	 the	
method’s	accuracy	and	efficiency	using	tables	and	figures.	The	results	show	that	
the	method	performed	better	in	terms	of	improving	accuracy	and	requiring	less	
rigorous	work.	
©2022	JNSMR	UIN	Walisongo.	All	rights	reserved.	
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1. Introduction		
This	 work	 focuses	 on	 fractional	 calculus,	

which	 is	 calculus	 with	 fractional	 derivatives.	
The	 ideal	 situation	 is	 to	 have	 the	 first	
derivative,	 velocity,	 and	 the	 second	 derivative,	
acceleration,	 and	 to	 be	 able	 to	 have	 any	
derivative	 between	 the	 first	 and	 second	
derivatives.	It	was	discovered	by	Leibniz	in	the	
year	 1695,	 a	 few	 years	 after	 discovering	
ordinary	 calculus,	 according	 to	 Adam	 [1],	

Caputo	 [2],	 Momani	 and	 Qaralleh	 [3],	 and	
Samko	 et	 al.	 [4],	 but	 it	 was	 later	 forgotten	
because	 the	 formula	 for	 these	 fractional	
derivatives	 is	 complex,	 making	 it	 difficult	 to	
work	with	ordinary	pencil	 and	paper,	but	now	
that	we	have	computers	and	machines	running,	
complexity	 is	 no	 longer	 a	 problem.	 The	 best	
way	 to	 model	 anomalous	 phenomena,	 such	 as	
heat	spreading	in	a	furnace,	plasma,	or	the	flow	
of	water	beneath	 the	ground,	 is	with	 fractional	
calculus.	It	is	also	used	to	simulate	virus	spread,	
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satellite	 disposition	 in	 space,	 and	 system	
memory	behavior.		

Since	 fractional	 calculus	 has	 piqued	 the	
interest	of	mathematicians	and	other	scientists,	
the	 solutions	 of	 fractional	 differential	 and	
Fractional	 Volterra-Fredholm	 Integro-
Differential	Equations	(FVFIDEs)	have	received	
extensive	 attention	 in	 recent	 years.	 Because	
many	 FVFIDEs	 cannot	 be	 solved	 analytically,	
obtaining	good	approximations	using	numerical	
techniques	 will	 be	 extremely	 helpful.	 Many	
authors	have	presented	numerical	methods	for	
solving	 the	 FVFIDEs,	 including	 the	 following:	
Mittal	 and	 Nigam	 [5]	 used	 the	 Adomian	
decomposition	 method	 (ADM)	 to	 solve	
Fractional	 Integro-Differential	 Equations	
(FIDEs),	 and	 Osama	 and	 Sarmad	 [6]	 used	
Bernstein	 polynomials	 as	 basis	 functions	 to	
approximate	the	solution	of	FIDEs.	Mohammed	
[7]	and	Mahdy	and	Mohamed	[8]	presented	the	
Least	Squares	Method	(LSM)	for	solving	FIDEs.	
Dilek	 and	 Aysegul	 [9]	 and	 Oyedepo	 et	 al.	 [10]	
used	 the	 collocation	method	 for	 solving	FIDEs.	
Aysegul	 and	 Dilek	 [11]	 used	 Lagurre	
polynomials	as	a	basis,	and	Alkan	and	Hatipoglu	
[12]	presented	fractional	order	approximations	
to	 FVFIDEs.	 Mohyud-Din	 et	 al.	 [13]	 used	 the	
Chebyshev	 wavelet	 method	 to	 solve	 nonlinear	
FVFIDEs	with	mixed	boundary	conditions.		

Zhou	 and	 Xu	 [14]	 introduced	 numerical	
solution	 of	 FVFIDEs	 with	 mixed	 boundary	
conditions	 using	 the	 Chebyshev	 wavelet	
method;	 Dehestani	 et	 al.	 [15]	 used	 a	
combination	 of	 Lucas	 wavelets	 and	 Legendre-
Gauss	 quadrature;	 Salman	 and	 Mustafa	 [16]	
used	 Lagrange	 polynomials;	 Rajagopal	 et	 al.	
[17]	applied	a	new	numerical	method	for	FIDEs;	
Lotfi	and	Alipanah	[18]	employed	the	Legendre	
spectral	 element	 method	 for	 solving	 Volterra-
integro	differential	 equations.	Also,	Meng	et	al.	
[19],	 Loh	 	 et	 al.	 [20],	 Keshavarz	 et	 al.	 [21],	
Ordokhani	 and	 Dehestani	 [22],	 Ordokhani	 and	
Rahimi	 	 [23],	 Oyedepo	 et	 al.	 [24-25]	 and	
Bhrawya	 et	 al.	 [26]	 contain	 a	 number	 of	
numerical	techniques	for	solving	the	FIDEs.			

Motivated	 and	 inspired	 by	 the	 preceding	
work,	 we	 propose	 a	 second-kind	 Chebyshev	
collocation	 technique	with	 improving	 accuracy	
and	 less	 rigorous	 work	 for	 FVFIDEs.	 In	 this	
work,	 the	 fractional	derivative	 for	 the	problem	

under	 consideration	 is	 taken	 for	 Different	
values	 of	 ∝	 yielding	 various	 approximate	
solutions.	The	 class	 of	 problem	 studied	 in	 this	
work	is:			

	𝜇!𝜑""(𝑥) + 𝜇#𝜑"(𝑥) + 𝜇$𝐷$𝜑(𝑥) + 𝜇%𝜑(𝑥) =
𝑓(𝑥) +
𝜆# ∫ 𝑘#(𝑥, 𝑡)𝜑(𝑡)𝑑𝑡	

&
% +𝜆! ∫ 𝑘!(𝑥, 𝑡)𝜑(𝑡)𝑑𝑡	

&
% 		 	 (1)	

Subject	to	this	boundary	conditions		
		𝜑(𝑎) = 0, 𝜑(𝑏) = 0,					𝑎 < 𝑥 < 𝑏																						(2)																																																																									
	
Where	 𝐷$𝜑(𝑥)	 indicates	 the	 ∝ 𝑡ℎ	 Caputo	
fractional	 derivative	 of	 𝜑(𝑥),	 𝑘#(𝑥, 𝑡)	 and			
𝑘!(𝑥, 𝑡)	are	the	Fredholm	and	Volterra	intergral	
kernel	 functions,	 𝜇#,	 𝜇!,	 𝜇$ 	 ,	𝜆#	 and	 𝜆!	 are	
known	constants,	𝑓(𝑥)	is	a	known	function	and		
𝜑(𝑥)	 is	 the	 unknown	 function	 to	 be		
determined.																																										

2. Basic	definitions		

2.1			Riemann-Liouville	fractional	derivative																																																					

Riemann-Liouville	 fractional	 derivative	
defined	as	[27]:	

	
	𝐷$𝑓(𝑥) = #

'()*∝)∫ (𝑥 − 𝑠)-*∝*#𝑓-(𝑠)𝑑𝑠,&
% 						(3)																																																																																				

𝑛	is	positive	integer	with	the	property	that		𝑟 −
1 <∝< 𝑟.	 	 For	example	 if	 	0 <∝< 1	 the	caputo	
fractional	derivative	is			
	
		𝐷$𝑓(𝑥) = #

'(#*∝)∫ (𝑥 − 𝑠)*∝𝑓#(𝑠)𝑑𝑠		&
% 											(4)																																																																																						

	
Hence,	we	have	the	following	properties:	
	

	(1)					𝐽$ 	𝐽.	𝑓 = 𝑗$0.	𝑓,	𝛼, 𝑣 > 0, 𝑓 ∈ 𝐶1 ,	
	(2)					𝐽$𝑥2= 3(40#)

3($020#)
𝑥$02,	𝛼 > 0, 𝛾 > −1, 𝑥 > 0		

(3)							𝐽$ 	𝐷$	𝑓(𝑥) = 𝑓(𝑥) − ∑ 𝑓6(0) &
!

6!
8*#
69% ,									

	𝑥 > 0, 𝑟 − 1 < 𝛼 ≤ 𝑟	
(4)					𝐷$ 	𝐽$	𝑓(𝑥) = 𝑓(𝑥),				𝑥 > 0, 𝑛 − 1 < 𝛼 ≤ 𝑛,	
(5)							𝐷$𝐶 = 0, 𝐶		is	the	constant	
	(6)							

G
0,																																																𝛽 ∈ 𝑁%, 𝛽 < [𝛼],													
	𝐷$𝑥: = 3(:0#)

3(:*$0#)
𝑥:*$ ,													𝛽 ∈ 𝑁%, 𝛽 ≥ [𝛼],			 																	

		
where	[𝛼]	denoted	the	smallest	 integer	greater	
than	or	equal	to	𝛼		and		𝑁% = {0,1.2, … }	
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2.2.	Chebyshev	Polynomials	of	the	Second	Kind	

						The	Chebyshev	Polynomials	of	the	second	
kind	are	defined	by:	
	
𝜑8(𝑥) =

;<=	[(80#)?@A"#&]
AC8(?@A"#&)

; 𝑛 = 0,1,2, …		with	
𝜑%(𝑥) = 1	and	𝜑#(𝑥) = 2𝑥.	
	
These	polynomials	form	an	orthogonal	system	
with	weight	function	𝑤(𝑥) = √1 − 𝑥!	on	
interval	[−1,1].	
	

The	recurrence	relation	is	given	by	
𝜑80#(𝑥) = 2𝑥𝜑8(𝑥) − 𝜑8*#(𝑥),	𝜑%(𝑥) =
1,	𝜑#(𝑥) = 2𝑥,	𝜑!(𝑥) = 4𝑥! − 1,	𝜑D(𝑥) = 8𝑥D −
4𝑥,	𝑛 = 0,1,2, …			
	

The	shifted	equivalent	of	it	that	valid	in	∈
[0,1]	are	given	as:	
𝜑%∗(𝑥) = 1,	𝜑#∗(𝑥) = 4𝑥 − 2	,	𝜑!∗(𝑥) = 16𝑥! −
16𝑥 + 3,	𝜑%∗(𝑥) = 64𝑥D − 96𝑥! + 40𝑥 − 4	
		
2.3 Absolute	Error	

	In	this	work,	we	defined	absolute	error	as:	
Absolute	Error=|Φ(𝑥) − 𝜑(𝑥)|; 	0 ≤ 𝑥 ≤ 1,				(5)				
where	Φ(𝑥)	is	the	exact	solution	and	𝜑(𝑥)	is	the	
approximate	solution.	

3. Solution	 of	 Fractional	 Fredholm	 and	
Volterra	Integro-Differential	Equations		

										The	techniques	is	based	on	approximating	
the	unknown	functions	𝜑(𝑥)	as	
𝜑(𝑥) = ∑ 𝜑C∗(𝑥)𝑐C8

C 																																																	(6)																																																
	
Where		𝜑C∗(𝑥)	is	shifted	Chebyshev	polynomial	
of	 the	 second	 kind	 and	 𝑐C , 𝑖 = 1,2,⋯𝑛	 are	
constants.	 Substituting	 Equation	 (4)	 and	 also	
applying	Equation	(3)		gives	
	
						𝜇! ∑ 𝜑C′′∗(𝑥)𝑐C8

C + 𝜇#∑ 𝜑C′∗(𝑥)𝑐C8
C +

𝜇$ _
#

'()*∝) ∫ (𝑥 − 𝑡)-*∝*#∑ 𝜑C-∗(𝑡)𝑐C8
C 𝑑𝑡	&

% ` +

𝜇%∑ 𝜑C∗(𝑥)𝑐C8
C − 𝜆# ∫ 𝑘#(𝑥, 𝑡) ∑ 𝜑C∗(𝑡)𝑐C8

C 𝑑𝑡	&
% –	

		𝜆! ∫ 𝑘!(𝑥, 𝑡) ∑ 𝜑C∗(𝑡)𝑐C8
C 𝑑𝑡	&

% = 𝑓(𝑥)					(7)																												
	
	

Let	
𝜁(𝑥) = 𝜇$ _

#
'()*∝) ∫ (𝑥 −&

%

𝑡)-*∝*# ∑ 𝜑C-∗(𝑡)𝑐C8
C 𝑑𝑡	`	,	 𝜂(𝑥) =

𝜆# ∫ 𝑘#(𝑥, 𝑡) ∑ 𝜑C∗(𝑡)𝑐C8
C 𝑑𝑡	&

% 					and			
	𝜏(𝑥) = 𝜆! ∫ 𝑘!(𝑥, 𝑡)∑ 𝜑C∗(𝑡)𝑐C8

C 𝑑𝑡	&
% .			

		
Substituting	 𝜁(𝑥),	 	 𝜂(𝑥)		 and	 𝜏(𝑥)	 in	

equation		(5)	,	equation	(5)		becomes													
		𝜇!∑ 𝜑C′′∗(𝑥)𝑐C8

C + 𝜇# ∑ 𝜑C′∗(𝑥)𝑐C8
C + 𝜁(𝑥) +

𝜇%∑ 𝜑C∗(𝑥)𝑐C8
C − 𝜂(𝑥) − 𝜏(𝑥) = 𝑓(𝑥)																(8)																																																								

		
Collocating	Equation	 (6)	 at	 equally	 spaced	

point	 	 𝑥C = 𝑎 + (F*G)C
80#

	 ,	 [𝑖 = 1(1)(𝑛 + 1)]	 gives	
linear	 system	algebraic	of	 equations	 in	(𝑛 + 1)	
unknown	 constants	 𝑐 ,C𝑠.	 Additional	 two	
equations	 are	 obtained	 from	 Equation	 (2)	 ,	
which	are	represented	in	matrix	form:		
																																																										

⎝

⎜
⎜
⎜
⎛

𝐴$$		
𝐴%$		
⋮
⋮

𝐴&$		
𝐴$$∗

𝐴%$∗

𝐴$%		
𝐴%%		
⋮
⋮

𝐴&%
𝐴$%∗

𝐴%%∗

𝐴$)		
𝐴%)		

		

⋮
⋮

𝐴&)
𝐴$)∗

𝐴%)∗

𝐴$*
𝐴%*
⋮
⋮

		𝐴&*		
𝐴$*∗

𝐴%*∗

		⋯
		⋯
⋮
⋮…
…
⋮

		𝐴$+
		𝐴%+
⋮
⋮

		𝐴&+
𝐴$+∗

𝐴%+∗⎠

⎟
⎟
⎟
⎞

⎝

⎜
⎜
⎜
⎜
⎛

𝑐,
𝑐$
⋮
⋮
⋮
⋮
⋮
𝑐+⎠

⎟
⎟
⎟
⎟
⎞

=

⎝

⎜
⎜
⎜
⎜
⎛

𝐵$$
𝐵%$
⋮
⋮
⋮

𝐵&+
0
0 ⎠

⎟
⎟
⎟
⎟
⎞

								(9)																																																																																						

	
where	 𝐴CA	 and	 𝐴CA∗	 are	 the	 coefficients	 of	 𝑐CA	
given	as:	
	A##, A#!, A#D, ⋯A#= = µ! ∑ 𝜑C""

∗(x#)8
C +

µ# ∑ 𝜑C"
∗(x#)8

C + ζ(x#) + µ%u(x#) − η(x#) −
τ(x#),	
	
		A!#, A!!, A!D, ⋯A!= = µ!∑ 𝜑C""

∗(x!)8
C +

µ# ∑ 𝜑C"
∗(x!)8

C + ζ(x!) + µ%u(x!) − η(x!) −
τ(x!),	
	
	AD#, AD!, ADD, ⋯AD= = µ!∑ 𝜑C""

∗(xD)8
C +

µ# ∑ 𝜑C"
∗(xD)8

C + ζ(xD) + µ%u(xD) − η(xD) −
τ(xD),	 A##∗, A#!∗, A#D∗, ⋯	A#=∗ =
∑ 𝜑C∗(𝑎)𝑐C8
C φ(a), A##∗, A#!∗, A#D∗, ⋯	A#=∗ =

∑ 𝜑C∗(𝑏)𝑐C8
C 	

		
and	 	 𝐵CA	 are	 values	 of	 𝑓(𝑥C)	 .	 	 The	 system	 of	
equations	 is	 then	 solved	 using	 the	 matrix	
inversion	to	find	the	unknown	constants.	
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⎝

⎜
⎜
⎜
⎜
⎛

𝑐,
𝑐$
⋮
⋮
⋮
⋮
⋮
𝑐+⎠

⎟
⎟
⎟
⎟
⎞

=

⎝

⎜
⎜
⎜
⎛

𝐴$$		
𝐴%$		
⋮
⋮

𝐴&$		
𝐴$$∗

𝐴%$∗

𝐴$%		
𝐴%%		
⋮
⋮

𝐴&%
𝐴$%∗

𝐴%%∗

𝐴$)		
𝐴%)		

		

⋮
⋮

𝐴&)
𝐴$)∗

𝐴%)∗

𝐴$*
𝐴%*
⋮
⋮

		𝐴&*		
𝐴$*∗

𝐴%*∗

		⋯
		⋯
⋮
⋮…
…
⋮

		𝐴$+
		𝐴%+
⋮
⋮

		𝐴&+
𝐴$+∗

𝐴%+∗⎠

⎟
⎟
⎟
⎞

-$

⎝

⎜
⎜
⎜
⎜
⎛

𝐵$$
𝐵%$
⋮
⋮
⋮

𝐵&+
0
0 ⎠

⎟
⎟
⎟
⎟
⎞

			(10)																			

	

Solving	 Equation	 (10)	 to	 obtain	 the	 unknown	
constants'	 values,	 which	 are	 then	 substituted	
back	into	the	assumed	approximate	solution	to	
obtain	the	required	approximate	solution.	

4.	Numerical	Examples	

Example	4.1	

Consider	 the	 following	 fractional	 Integro-
differential	[12]							
		𝜑""(𝑥) + 𝜇#𝜑"(𝑥) +

#
&
𝐷$𝜑(𝑥) + #

&.
𝜑(𝑥) −

∫ sin(𝑥 − 𝑡)𝜑(𝑡)𝑑𝑡 − ∫ cos(𝑥 − 𝑡)𝜑(𝑡)𝑑𝑡	#
%

&
% =
	5 + 1.50451𝑥%.I − 13𝑥 − 1.80541𝑥#.I − 𝑥! +
𝑥D − 2.067𝑥 cos 𝑥 + 5.95385 sin 𝑥														(11)					
	
Subject	 to	 the	 boundary	 conditions	 	 	 	𝜑(0) =
0, 𝜑(1) = 0.	 For	 𝛼 = 0.5,	 the	 exact	 solution	
is	𝜑(𝑥) = 𝑥! − 𝑥D.		
Applying	 the	 proposed	 technique	 for	 different	
value	
∝= 0.25,0.5, 0.75, 1,	 we	 have	 the	 following	
approximate	solutions.	
		

For∝= 0.25,𝜑(𝑥) = 0.001099913664 −
0.0781782012𝑥 + 1.258075702𝑥! −
1.505546197𝑥D + 0.3899076354𝑥J −
0.09839363348𝑥I			
		

For∝= 0.5,	 𝜑(𝑥) = −3.477493347 ×
10*K + 8.911 × 10*K + 1.000001733𝑥! −
1.000007095𝑥D + 0.000005734436341𝑥J −
0.000001653993763𝑥I	

	For∝= 0.75,𝜑(𝑥) = 0.02790181811 −
0.2384448638𝑥 + 1.365160170𝑥! −	

1.094467024𝑥D − 0.05947024762𝑥J
+ 0.01805285073𝑥I	

		
For∝= 1,𝜑(𝑥) = 0.04180385714 −

0.4988617689𝑥 + 1.829826306𝑥! −	
1.428246445𝑥D + 0.1000924785𝑥J

− 0.0318246893𝑥I	
	
Example	4.2	

Consider	 the	 following	 fractional	 Integro-
differential	[12]	
		𝜑""(𝑥) + 𝐷$𝜑(𝑥) − 2∫ (𝑥 − 𝑡)𝜑(𝑡)𝑑𝑡 −&

%

∫ (𝑥! − 𝑡)𝜑(𝑡)𝑑𝑡	#
% = #

D%
− 6𝑥 − #L#&.

!%
+ 4𝑥D −

&/

#%
+ &0

#I
																																																																							(12)																																																																																																											

	
Subject	 to	 the	 boundary	 conditions				

𝜑(0) = 0, 𝜑(1) = 0.	 For	 	 𝛼 = 1,	 the	 exact	
solution	 is	𝜑(𝑥) = 𝑥J − 𝑥D.	 Applying	 the	
proposed	technique	for	different	values	
				∝= 0.25, 0.5, 0.75, 1,		 we	 have	 the	 following	
approximate	solutions.	
		

For		∝= 0.25,	𝜑(𝑥) = −4.612508 × 10*K	
+0.0354158408𝑥 + 0.033656421𝑥! −
1.111888372𝑥D + 0.9068757514𝑥J +
0.1359420178𝑥I		
			

For		∝= 0.5,	𝜑(𝑥) = −1.494852 × 10*K	
+0.0408296333𝑥 + 0.022510945𝑥!

− 1.077212455𝑥D
+ 0.8578247006𝑥J
+ 0.1560480913𝑥I	

	
For		∝= 0.57,	𝜑(𝑥) = 3.171 × 10*M	

+0.0466614758𝑥 + 0.022510945𝑥! −
1.037081915𝑥D + 0.8017927517𝑥J +
0.1788627557𝑥I			
		

For		∝= 1,	𝜑(𝑥) = 𝑥J − 𝑥D	
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5. Result	and	Discussion	
Table	1	Comparison	of	the	absolute	errors	for	example	4.1	

x	 [12]	Error	N=32	 Our	Method			N=5	

0.0	 -	 3.477 × 10*K	

0.2	 2.048 × 10*%I	 1.483 × 10*%K	

0.4	 2.503 × 10*%I	 3.823 × 10*%L	

0.6	 1.789 × 10*%I	 1.070 × 10*%K	

0.8	 7.682 × 10*%I	 3.515 × 10*%K	

1.0	 -	 7.836 × 10*%K	

	 	
Table	2	Comparison	of	the	absolute	errors	for	example	4.1	

x	 Exact	 Approximate	 Error	

0.0	 0.0000	 0.0000	 0.0000	

0.2	 -0.0064	 -0.0064	 0.0000	

0.4	 -0.0384	 -0.0384	 0.0000	

0.6	 -0.0684	 -0.0684	 0.0000	

0.8	 -0.1024	 -0.1024	 0.0000	

1.0	 0.0000	 0.0000	 0.0000	
	

	
	

Figure	1	Showing	the	graphical	behavior	of	the	
approximation	solutions	of	example	4.1	

Figure	2	Showing	the	graphical	behavior	of	the	
approximation	solutions	of	example	4.2	
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Table	1	shows	that	our	method	performed	
more	 accurately	 because	 the	 table	 of	 errors	
found	 is	 smaller	 than	 [12],	 and	 it	 can	 also	 be	
seen	that	we	got	a	better	result	at	N	=	5	against	
their	result	at	N	=	32.	Figure	1	shows	that	at,	∝
= 0.5,	 the	 approximate	 solution	 is	 in	 excellent	
agreement	with	 the	exact	 solution,	 and	 for	∝=
0.25, 0.75		 	 and	 1,	 the	 approximate	 solutions	
deviates		from	the	exact	solution	as	the	value	N	
of	 increases.	 Table	 2	 shows	 that	 our	 method	
provided	an	exact	solution.	

Figure	 2	 shows	 that	 at,	 the	 approximate	
solution	 is	 in	 excellent	 agreement	 with	 the	
exact	 solution,	 and	 for	 and	 ∝= 0.25, 0.5		 and	
0.75,	 the	 approximate	 solution	deviates	with	 a	
small	 change	 from	 the	 exact	 solution	 as	 the	
values	of	increase.	

6. Conclusion	
This	 work	 concentrated	 on	 numerical	

solution	 of	 FVFIDEs	 using	 second	 kind	
Chebyshev	collocation	technique.	We	confirmed	
that	 the	 proposed	 method	 is	 in	 excellent	
agreement	 with	 the	 exact	 solution	 using	
numerical	calculations;	Tables	1	and	2	show	the	
effectiveness	 of	 the	 proposed	 second	 kind	
Chebyshev	collocation	technique	over	the	Alkan	
and	 Hatipoglu	 [12]	 method.	 Based	 on	 their	
findings,	 the	 researchers	 can	 apply	 this	
technique	to	other	FVFIDEs.								.	
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