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ABSTRACT 
This study introduces numerical computational methods that employ fourth-kind Chebyshev 
polynomials as basis functions to solve sixth-order boundary value problems. The approach transforms 
Boundary Value Problems (BVPs) into a set of linear algebraic equations expressed as unidentified 
Chebyshev coefficients. These coefficients are subsequently resolved using matrix inversion. Numerical 
simulations are conducted to verify the appropriateness and effectiveness of this method, demonstrating 
its simplicity and superior performance compared to existing solutions. Furthermore, a graphical 
representation of the method's solution is incorporated. 
 
Keywords: 
Approximate solution; Boundary value problems; Collocation; Fourth kind Chebyshev polynomials; 
 

Introduction 
Boundary Value Problems (BVPs) arise when a set of ordinary differential equations has 

solution values and derivatives specified at certain points. Specifically, a two-point BVP involves 
determining the solution and derivatives at the boundaries. BVPs play a crucial role in 
mathematically simulating various real-world phenomena, including viscoelastic flow, heat 
transfer, and engineering sciences. To address BVPs, numerous numerical methods have been 
developed and explored. Several notable approaches have been investigated to solve BVPs. These 
strategies encompass utilizing global phase integral techniques to estimate eigenvalues in sixth-
order BVPs [1]. Additionally, a comparison was conducted between B-spline interpolation and 
finite difference, finite element, and finite volume methods for two-point BVP [2]. Other 
methodologies involve employing homotopy perturbation methods to address sixth-order BVPs 
[3] and utilizing non-polynomial splines to solve sixth-order BVPs [4]. Furthermore, there is 
innovation introduced through a novel cubic B-spline method for linear fifth-order BVP [5]. 

Other techniques include applying the collocation method to solve sixth-order BVPs [6], 
utilizing the Daftardar Jafari method for numerical solutions of fifth and sixth-order nonlinear 
BVPs [7], and employing interpolation subdivision schemes for the numerical solution of two-
point BVPs [8, 9]. Additionally, there is the development of a subdivision scheme-based 
collocation algorithm for fourth-order BVP [10]. Further methods involve using He polynomials 
in variational iteration methods to solve seventh-order BVPs [11] and applying power series 
approximation methods for the numerical solution of nth-order BVPs [12]. Another approach 
includes utilizing the tau collocation approximation method to solve first and second-order 
ordinary differential equations [13]. Overall, this review is dedicated to the numerical solutions 
of sixth-order BVPs and illustrates the various approaches that have been explored in the 
literature: 
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𝑣𝑣𝑖(𝑡) + 𝜇1(𝑡)𝑣
𝑣(𝑡) + 𝜇2(𝑡)𝑣

𝑖𝑣(𝑡) + 𝜇3(𝑡)𝑣
𝑖𝑖𝑖(𝑡) + 𝜇4(𝑡)𝑣

𝑖𝑖(𝑡) +  
𝜇5(𝑡)𝑣

𝑖(𝑡) + 𝜇6(𝑡)𝑣(𝑡) = 𝑔(𝑡) , 𝑡 ∈ [𝑎, 𝑏]       (1)                              

 

with boundary conditions 

 

𝑣𝑖(𝑎) = 𝛼𝑖 , 𝑣
𝑖(𝑏) = 𝛽𝑖, 𝑖 = 0,1,2,         (2) 

 

Where 𝛼0 , 𝛼1 , 𝛼2 and  𝛽0 , 𝛽1, 𝛽2 are given real constants, 𝜇𝑖(𝑡), 𝑖 = 0,1,2,⋯ 𝑛  and 𝑔(𝑡) are 

known functions on the an interval ∈ [𝑎, 𝑏] and 𝑣(𝑡) is the unknown function to be determined 

 
Basic Definition 

 

1. Chebyshev polynomials of the fourth kind 
Chebyshev polynomials of the fourth type are orthogonal polynomials related to weight 

functions (𝑥) = √
1−𝑡

1+𝑡
 ∀ 𝑡 ∈ [−1,1]. The Chebyshev polynomials of the fourth kind are defined by 

𝑊𝑛(𝑡) =
sin (𝑛+

1

2
)𝜃

sin(
𝜃

2
)

 with 𝑊0(𝑡) = 1 and 𝑊1(𝑡) = 2𝑡 + 1. 

 
Hence, the first few Chebyshev Polynomials of the fourth kind are given below: 
 
𝑄0(𝑡) = 1,𝑄1(𝑥) = 2𝑡 + 1, 𝑄2(𝑡) = 4𝑡

2 + 2𝑡 − 1, 𝑄3(𝑡) = 8𝑡
3 + 4𝑡2 − 3𝑡 − 1,   

                                         
2. Shifted Chebyshev polynomials of the fourth kind 

The fourth kind of Shifted Chebyshev Polynomials serves as orthogonal polynomials with 
respect to a specific weight function.  

 

𝑊∗(𝑡) = √
1−𝑡

𝑡
 ∀ 𝑡 ∈ [0,1] with starting values 𝑄∗0(𝑡) = 1 and 𝑄∗1(𝑡) = 4𝑡 − 1. 

 
Hence, the first few Shifted Chebyshev Polynomials of the fourth kind are given below: 
 
𝑄∗0(𝑡) = 1,𝑄

∗
1
(𝑡) = 4𝑡 − 1, 𝑄∗2(𝑡) = 16𝑡

2 − 12𝑡 + 1,𝑄∗3(𝑡) = 64𝑡
3 − 80𝑡2 + 24𝑡 − 1   

 

3. Absolute Error 
 We defined absolute error as follows in this study: Absolute Error=|V(𝑡) − 𝑣(𝑡)|;  0 ≤ 𝑡 ≤

1,    where V(𝑡) is the exact solution and 𝑣(𝑡) is the approximate solution 

 
Methods  
 

T he  st udy employ ed t he  fourt h -k ind  Che bys he v p oly nomials  as  a n  
ap proximat ion met hod,  ut il iz in g  t he  f ol low in g f orm:  
 
𝑣(𝑡) = ∑ 𝑄(𝑡)𝑛

𝑖=0 𝑎𝑖                                                                                                                   (3)                                                                                                  
 
The unknown constants to be determined are 𝑎𝑖 , 𝑖 = 0(1)𝑛 
Thus, by differentiating equation (3) for n𝑡ℎ-times as functions of t and substituting resulting 

solution into question (1), we have   
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∑ 𝑄𝑣𝑖(𝑡)𝑛
𝑖=0 𝑎𝑖 + 𝜇1(𝑡)∑ 𝑄𝑣(𝑡)𝑛

𝑖=0 𝑎𝑖 + 𝜇2(𝑡)∑ 𝑄𝑖𝑣(𝑡)𝑛
𝑖=0 𝑎𝑖 + 𝜇3(𝑡)∑ 𝑄𝑖𝑖𝑖(𝑡)𝑛

𝑖=0 𝑎𝑖 +

𝜇4(𝑡)∑ 𝑄𝑖𝑖(𝑡)𝑛
𝑖=0 𝑎𝑖 + 𝜇5(𝑡) ∑ 𝑄𝑖(𝑡)𝑛

𝑖=0 𝑎𝑖 + 𝜇6(𝑡)∑ 𝑄(𝑡)𝑛
𝑖=0 𝑎𝑖 = 𝑔(𝑡)      (4) 

Let η(t) = ∑ 𝑄𝑣𝑖(𝑡)𝑛
𝑖=0 𝑎𝑖, τ(t) = ∑ 𝑄𝑣(𝑡)𝑛

𝑖=0 𝑎𝑖, 𝜍(𝑡) = ∑ 𝑄𝑖𝑣(𝑡)𝑛
𝑖=0 𝑎𝑖 , 𝜉(𝑡) = ∑ 𝑄𝑖𝑖𝑖(𝑡)𝑛

𝑖=0 𝑎𝑖, 

𝛾(𝑡) = ∑ 𝑄𝑖𝑖(𝑡)𝑛
𝑖=0 𝑎𝑖, 𝜒(𝑡) = ∑ 𝑄𝑖(𝑡)𝑛

𝑖=0 𝑎𝑖, 𝜔(𝑡) = ∑ 𝑄(𝑡)𝑛
𝑖=0 𝑎𝑖  

 
The system of linear algebraic equations involving (n+1) unknown constants 𝑎,𝑖𝑠 is 

derived by collocating equation (4) at evenly spaced points 𝑡𝑖 = 𝑎 +
(𝑏−𝑎)𝑖

𝑛
 , (𝑖 = 0(1)𝑛). 

Additional equations are derived from Eq. (2) and are expressed in matrix form:  
 

(

 
 
 
 
 
 
 

𝑊11  
𝑊21  
⋮
⋮

𝑊𝑚1  
𝑊11

0

𝑊21
1

⋮
⋮

𝑊𝑚1
𝑛

𝑊12  
𝑊22  
⋮
⋮

𝑊𝑚2
𝑊12

0

𝑊22
1

⋮
⋮

  𝑊𝑚2
𝑛  

𝑊13  
𝑊23  

  

⋮
⋮

𝑊𝑚3
𝑊13

0

𝑊23
1

⋮
⋮

𝑊𝑚3
𝑛  

𝑊14
𝑊24
⋮
⋮

  𝑊𝑚4  

𝑊14
0

𝑊24
1

⋮
⋮

𝑊𝑚4
𝑛  

  ⋯
  ⋯
⋮
⋮…
……
⋮
⋮
…

  𝑊1𝑛
  𝑊2𝑛
⋮
⋮

  𝑊𝑚𝑛
𝑊1𝑛

0

𝑊2𝑛
0

⋮
⋮

    𝑊𝑚𝑛
𝑛)

 
 
 
 
 
 
 

(

 
 
 
 
 
 
 
 

𝑎0
𝑎1
⋮
⋮
⋮
⋮
⋮
⋮
⋮
⋮
𝑎𝑛)

 
 
 
 
 
 
 
 

=

(

 
 
 
 
 
 
 
 

𝑋11
𝑋21
⋮
⋮
𝑋𝑚𝑛
𝑋11

0

𝑋22
1

⋮
⋮

𝑋𝑚𝑛
𝑛)

 
 
 
 
 
 
 
 

                                            (5)                                 

 
where 𝑊𝑖𝑠 and  𝑊𝑖𝑠

∗ are the coefficients of 𝑎𝑖𝑠 given as 
 
W11, W12,W13, ⋯W1n = η(𝑡1) + 𝜇1(𝑡1)τ(𝑡1) + 𝜇2(𝑡1)𝜍(𝑡1) + μ3(𝑡1)𝜉(𝑡1) + μ4 𝛾(𝑡1) +

𝜇5(𝑡1)𝜒(𝑡1) + 𝜇6(𝑡1)τ(𝑡1) + 𝜔(𝑡1)𝜔(𝑡1)  

W21, W22, W23, ⋯W2n = η(𝑡2) + 𝜇1(𝑡2)τ(𝑡2) + 𝜇2(𝑡2)𝜍(𝑡2) + μ3𝜉(𝑡2) + μ4 𝛾(𝑡2) + 𝜇5(𝑡2)𝜒(𝑡2) +

𝜇6(𝑡2)(𝑡2)τ(𝑡2) + 𝜔(𝑡2)𝜔(𝑡2)  

W31, W32, W33, ⋯W3n = η(𝑡3) + 𝜇1(𝑡3)τ(𝑡3) + 𝜇2(𝑡3)𝜍(𝑡3) + μ3𝜉(𝑡3) + μ4(𝑡3) 𝛾(𝑡3) +

𝜇5(𝑡3)𝜒𝑡3 + 𝜇6(𝑡3)τ(𝑡3) + 𝜔(𝑡3)𝜔(𝑡3)  

 

W11
0,W12

0,W13
0,⋯ W1n

0  are values of 𝑣𝑖(𝑎)  and 𝑣𝑖(𝑏), and  𝑋𝑖𝑠 are values of 𝑓(𝑡𝑖). 
Let equation (5)  be:  
 
  𝐺(𝑡𝑖)𝐴 = 𝐵(𝑡𝑖)                                                                                                                          (6)                                                                                                        

Where  𝐺(𝑡𝑖) =

(

 
 
 
 
 
 
 

𝑊11  
𝑊21  
⋮
⋮

𝑊𝑚1  
𝑊11

0

𝑊21
1

⋮
⋮

𝑊𝑚𝑛
𝑛

𝑊12  
𝑊22  
⋮
⋮

𝑊𝑚2
𝑊12

0

𝑊22
1

⋮
⋮

  𝑊𝑚2
𝑛  

𝑊13  
𝑊23  

  

⋮
⋮

𝑊𝑚3
𝑊13

0

𝑊23
1

⋮
⋮

𝑊𝑚3
𝑛  

𝑊14
𝑊24
⋮
⋮

  𝑊𝑚4  

𝑊14
0

𝑊24
1

⋮
⋮

𝑊𝑚4
𝑛  

  ⋯
  ⋯
⋮
⋮…
……
⋮
⋮
…

  𝑊1𝑛
  𝑊2𝑛
⋮
⋮

  𝑊𝑚𝑛
𝑊1𝑛

0

𝑊2𝑛
0

⋮
⋮

    𝑊𝑚𝑛
𝑛)

 
 
 
 
 
 
 

, 𝐴 =

(

 
 
 
 
 
 
 
 

𝑎0
𝑎1
⋮
⋮
⋮
⋮
⋮
⋮
⋮
⋮
𝑎𝑛)

 
 
 
 
 
 
 
 

 , 𝐵(𝑡𝑖) =

(

 
 
 
 
 
 
 
 

𝑋11
𝑋21
⋮
⋮
𝑋𝑚𝑛
𝑋11

0

𝑋22
1

⋮
⋮

𝑋𝑚𝑛
𝑛)

 
 
 
 
 
 
 
 

 

 
Multiply both sides of equation (7) by 𝐺(𝑡𝑖)

−1 gives  
 
𝐴 = 𝐺(𝑡𝑖)

−1𝐵(𝑡𝑖)                                                                                                                    (7)                                                                                                                             
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The sought-after approximate solution is achieved by solving Equation (7) and then substituting 

the values of the unknown constants into the assumed approximation.  

 
Numerical Examples 
Example 4.1 [17]:  
Consider the sixth Order Boundary Value Problem 

 
𝑣6(𝑡) = −𝑒−𝑡𝑣(𝑡) − 720 + (𝑡 − 𝑡2)3𝑒−𝑡 − (24 + 11𝑡 + 𝑡3)𝑒𝑡 ,                                        0 ≤ 𝑥 ≤ 1,   
 
Subject to the boundary conditions  
 
𝑣(0) = 0, 𝑣′(0) = 0, 𝑣′′(0) = 0 
𝑣(1) = 0, 𝑣′(1) = 0, 𝑣′′(1) = 0 
 
With the exact solution 𝑣(𝑡) = 𝑡3(1 − 𝑡)3 
 
The method described above yielded the following unknown constants: 
 
𝑎0 = 0.00490799343032222, 𝑎1 = 0.00363337400941077, 𝑎2 = −0.00366616558853217, 

𝑎3 = −0,00145845725661431,  𝑎4 = 0.00146489920132309, 𝑎5 = 0.000243247309597905, 

𝑎6 = −0.000244053037691126 , 𝑎7 = 2.09204234463831 × 10
−8 , 𝑎8 = 3.30229265055337 ×

10−9, 𝑎9 = 2.79885487548571 × 10
−10, 𝑎10 = 6.01190492266665 × 10

−12 

Thus, the approximate solution is given as; 

𝑣(𝑡) = 0.00002575126406𝑡 + 0.00004449205069 + 2.998813827𝑥5 − 1.000001130𝑡6

+ 0.00001448668102𝑡7 − 0.00003512331024𝑡8 + 0.00004342658996𝑡9

+ 0.000006303939217𝑡10 − 2.997471404𝑡4 + 0.9985116227𝑡3

− 0.000003333748543𝑡2 

 

Table 1. Shows numerical outcomes for example 4.1 at n=10 
t Exact Approximate Solution 

n=10 
[17] 

Absolute Error 
n=10 

Absolute Error of 
proposed method 

n=10 

0.0 0.000000 0.00004449205069 - 4.449E-05 
0.1 0.000729 0.00077485313520 2.25E-04 4.585E-05 
0.2 0.004096 0.0041375348600 7.36E-04 4.153E-05 
0.3 0.009261 0.00929093143700 1.28E-03 2.993E-05 
0.4 0.013824 0.01383666358000 1.68E-03 1.266E-05 
0.5 0.015625 0.01561817254000 1.83E-03 6.827E-06 
0.6 0.013824 0.01379936125000 1.68E-03 2.464E-05 
0.7 0.009261 0.00922335963700 1.28E-03 3.764E-05 
0.8 0.004096 0.00922335963700 7.36E-04 4.444E-05 
0.9 0.000729 0.00068316123630 2.25E-04 4.584E-05 
1 0.000000 -0.00004441255146 - 4.441E-05 
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Figure 1. Demonstrates the graphical results for Example 4.1's precise solution and 

approximation solution 

 

Example 4.2 [17]:  
Consider the sixth Order Boundary Value Problem 
 
𝑣6(𝑡) = −𝑡𝑣(𝑡) − (24 + 11𝑡 + 𝑡3)𝑒𝑡 ,                                                                                   0 ≤ 𝑥 ≤ 1,   
 
Subject to the boundary conditions  
𝑣(0) = 0, 𝑣′(0) = 1, 𝑣′′(0) = 1 

𝑣(1) = 0, 𝑣′(1) = 𝑒, 𝑣′′(1) = −4𝑒 

 
with the exact solution 𝑉(𝑡) = (1 − 𝑡)𝑒𝑡 
 
The unknown constants are determined through the method described above: 
 
𝑎0 = 0.186363835481144, 𝑎1 = −0.129257730476006, 𝑎2 = −0.0770104498035282,  

𝑎3 = −0.0227622168161328,  𝑎4 = −0.00298134018729407, 𝑎5 = −0.000255683190010569, 

𝑎6 = −0.0000160672348446424, 𝑎7 = −8.09529136914819 × 10
−7, 

𝑎8 = −3.38989522492939 × 10
−8, 𝑎9 = −1.23436508172706 × 10

−9, 

 𝑎10 = −3.96164106489073 × 10
−11 

 

Therefore, the approximate solution is expressed as: 

𝑣(𝑡) = 1.000039381𝑡 + 0.0001169246131 − 0.1267651183𝑡5 − 0.03333581402𝑡6 −

0.006917808190𝑡7 − 0.001243614852𝑡8 − 0.0001262625174𝑡9 − 0.00004154081741𝑡10 −

0.3289484951𝑡4 − 0.5028946860𝑡3 − 1. 014260607× 10−7𝑡2 
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Table 2. Shows numerical outcomes for example 4.2 at n=10 
t Exact Approximate Solution 

n=10 
Absolute Error 

n=10 
[17] 

Absolute Error of 
the proposed 
method n=10 

0.0 0.00000000000 0.0001169246131 - 1.169E-04 
0.1 0.09946538262 0.0995837725200 3.81E-05 1.184E-04 
0.2 0.19542444130 0.1955325397000 1.59E-04 1.081E-04 
0.3 0.28347034970 0.2835521705000 3.41E-04 8.182E-05 
0.4 0.35803792750 0.3580795469000 5.33E-04 4.162E-05 
0.5 0.41218031780 0.4121740514000 6.74E-04 6.266E-06 
0.6 0.43730851200 0.4372549752000 7.08E-04 5.354E-05 
0.7 0.42288806850 0.4227961197000 6.08E-04 9.195E-05 
0.8 0.35608654850 0.3559711134000 3.91E-04 1.154E-04 
0.9 0.22136428000 0.2212420603000 1.35E-04 1.222E-04 
1 0.00000000000 -0.0001169323739 - 1.169E-04 

 

 
Figure 2. Demonstrates the graphical results for Example 4.2's precise solution and 

approximation solution 

 

Conclusion 

 

This work successfully employs the suggested approach to solve numerically six-order 
boundary value problems with fourth-kind shifted Chebyshev polynomials. The correctness and 
effectiveness of the method are demonstrated numerically using tables and figures. The proposed 
technique outperformed the method of [17] at all points, as can be seen from Example 1. It can 
also be argued that the proposed method marginally outperformed the method of [17] at points 
0.3, 0.4, 0.5, 0.6, and 0.7 in example 2. Excellent agreement between the approximation solutions' 
graphs and the exact solutions can be seen in Figures 1–2. The outcomes of this study recommend 
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the proposed strategy for resolving additional boundary value issues after taking the 
aforementioned factors into account. 
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