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ABSTRACT 
Actinomycetes form associations with plants through colonizing plant tissues (endophytes) or by 
residing in the soil around some plants' roots (rhizosphere). Actinomycetes are known to produce 
antibacterial compounds.  This study aimed to investigate the antibacterial activity of actinomycetes 
associated with the clove plant (Syzygium aromaticum) against Staphylococcus aureus and Escherichia 
coli. Actinomycetes were isolated from clove plants and the rhizosphere, and their antimicrobial activity 
against Staphylococcus aureus and Escherichia coli was evaluated using the agar plug method, where the 
presence of transparent zones around 10-day-old actinomycete growth indicated inhibition of bacterial 
growth. Four isolates showed inhibitory effects against Staphylococcus aureus, while only three isolates, 
B.4, T.3, and T.4, demonstrated inhibitory activity against Escherichia coli, as indicated by the presence 
of inhibition zones. Isolate T.3 exhibited the highest inhibition zone of 8.5 mm against S. aureus, whereas 
B.4 displayed the highest inhibition zone of 7.7 mm against E. coli. In conclusion, the actinomycetes found 
in clove plants (Syzygium aromaticum) demonstrate antibacterial properties against Staphylococcus 
aureus and Escherichia coli, indicating their potential as antibacterial agents. 
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Introduction 
 

Antibiotic release into the environment and persistent antimicrobial residues have been 
widely studied globally, as antibiotics overuse and misuse lead to increased presence and spread 
in the background. Non-medical antibiotic use has an impact on both the environment and human 
health. This issue has garnered more attention with the rise of drug-resistant bacteria infections 
globally. 

Numerous studies have shown that bacteria have developed resistance to antibiotics 
commonly used in clinical treatment (Klein et al., 2019; Saha et al., 2021; Sulis et al., 2022). It has 
been reported that community-acquired Escherichia coli infections are resistant to commonly 
used oral antibiotics, such as amoxicillin, cefixime, and ciprofloxacin, presenting a challenge for 
outpatient treatment  (Lee et al., 2018; Seok et al., 2020; Mfoutou et al., 2021). Additionally, the 
global issue of increasing resistance to antimicrobial agents by Staphylococcus aureus, 
particularly in the case of methicillin-resistant strains, presents a significant challenge in 
managing infections caused by these bacteria (Gajdács et al., 2019; Guo et al., 2020). The presence 
of resistant bacteria can lead to more extended hospital stays, increased healthcare costs, and, 
most critically, higher rates of illness and death (Dadgostar et al., 2019). Therefore, exploring 
natural bioactive compounds as potential new antibiotics is crucial to address this problem. 
Actinomycetes, which are frequently discovered in the tissues of plants (endophytes) and around 
plant roots (rhizosphere), have been explored as a promising source for the production of 
bioactive compounds (Quach et al., 2021; Natsagdorj et al., 2021; Elshafie et al., 2022). 
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Actinomycetes are widely recognized for producing various secondary metabolites, including 
antibiotics, antitumor agents, and plant growth hormones, which are significant for both the 
pharmaceutical and agricultural industries (Selim et al., 2021; De Simeis et al., 2021). Research 
has shown that these microorganisms are abundant and associated with medicinal plants, and 
some produce biologically active substances with distinct chemical compositions (Oberhofer et 
al., 2019; Aamir et al., 2020). Despite this, the diversity of actinomycetes and their bioactive 
compounds associated with medicinal plants in unique environments remains limited. Efforts to 
identify the functional properties of endophytic actinomycetes hold significant promise in 
addressing the current challenge of drug resistance. Thus, this study examines the antibacterial 
properties of actinomycetes found in association with the clove plant (Syzygium aromaticum) 
against Staphylococcus aureus and Escherichia coli. 
 

Methods 
 
Materials 

The clove plants were obtained from a plant market in Yogyakarta. The rhizosphere soil 
was collected around the clove plant roots from a 5 cm radius. The test bacteria, Staphylococcus 
aureus, and Escherichia coli, were obtained from the Microbiology Laboratory, Universitas Ahmad 
Dahlan. The media used were Starch Casein Agar (Himedia®), Nutrient Agar (Oxoid®), and 
Nutrient Broth (Oxoid®). Other chemical substances utilized were distilled water, 70% alcohol, 
0.5% NaClO solution, and gram staining (methylene blue, safranin, iodine, and crystal violet). 
 
Isolation of actinomycetes 

The isolation of actinomycetes from clove plants began with sterilizing the surface of the 
plant organ samples (leaves and stems) based on the method described by (Passari et al., 2015). 
The pieces were then cleaned with flowing water and gradually treated with 70% (v/v) alcohol 
for 1 minute, 0.5% (v/v) NaClO solution for 3 minutes, 70% (v/v) alcohol for 30 seconds, and 
sterilized water twice before being dried. The samples were cut and ground aseptically with a 
mortar, placed on Starch Casein Agar (SCA) media supplemented with 1% nystatin, and then 
incubated at room temperature (26°C) for 2 weeks.  

Isolation of actinomycetes from the rhizosphere of clove plants involved drying a soil 
sample at room temperature for 4 days (Jiang et al., 2016). One gram of soil was placed in a tube 
containing 9 mL of sterilized 0.85% NaCl solution and vortexed for 5 minutes. The sample 
suspension was placed in hot water at 50°C for 10 minutes and then serially diluted. The 10-3 and 
10-4 dilution suspensions were inoculated using the pour plate method on SCA media 
supplemented with 1% nystatin. The samples were incubated at 26°C for 2 weeks. 
 
Morphological characterization 

The successfully isolated actinomycetes were grown on SCA media for 10 days at room 
temperature. The macroscopic characterization of Actinomycetes involved analyzing colony 
morphology and color in SCA media (Katili et al., 2017). Color observation includes air mycelium 
and substrate mycelium colors. Colony morphology was observed to determine characteristics 
such as colony edge, elevation, and shape (Li et al., 2016). Microscopic characterization was done 
by following the cell and spore shapes of the actinomycetes under a microscope. A pure isolated 
culture was aseptically transferred onto a glass slide and gram-stained to examine actinomycetes' 
cell and spore morphology. Actinomycete isolates that met the characteristic morphology criteria 
(gram-positive, mycelial growth & spore formation) were screened for antibacterial activity. 
 
Antibacterial Activity 

The antimicrobial activities of each actinomycete were tested against pathogenic bacteria 
(Staphylococcus aureus and Escherichia coli) using the agar plug method (Balouiri et al., 2016). 
The actinomycetes were grown on SCA media at 28°C for 10 days while the bacteria were cultured 
on NB media. Subsequently, a 5 mm agar plug containing 10-day-old actinomycetes growth was 
aseptically placed in the center of a 9 cm NA culture plate. A 5 mm agar plug containing SCA media 
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was used as a negative control. Following this, all the dishes were appropriately sealed with 
parafilm and then incubated at 28 ± 2°C for 24 hours. The development of a transparent zone 
surrounding the actinomycete colonies indicated an inhibition zone (Ortlieb et al., 2021). This 
test was conducted three times. The standard for measuring antibacterial activity is based on 
Davis and Stout's classification, which includes weak (less than 5 mm), moderate (between 5 and 
10 mm), strong (between 10 and 19 mm), and very strong (greater than 20 mm).  
 
Data Analysis 

The experiments were carried out in triplicate and the results were presented as the mean 
value ± standard deviation. Shapiro-Wilk test was used to do a prior normality test. One-way 
analysis of variance (ANOVA) and the Tukey test were used to determine the statistical 
significance of the data. The statistical evaluations were carried out using GraphPad Prism. 
 
Results and Discussions 
 

A total of 4 actinomycete isolates were successfully isolated from the internal tissues of 
the plant (endophytes) and the rhizosphere. Initially, the isolation process yielded 1 endophytic 
actinomycete isolates and 3 actinomycete isolates from the rhizosphere of clove plants. Among 
the plant organs, the lowest number of isolates was obtained from the leaves. This finding is 
consistent with the results of a study by Saini et al. (2016) on the isolation of actinomycetes from 
Syzygium cumini plants, where a higher number of isolates were found in the stems (21) 
compared to the leaves (1). Endophytic actinomycetes are more commonly found in the roots and 
stems than in the leaves. Nevertheless, investigations into actinomycete colonization in different 
parts of medicinal plants have yielded inconsistent outcomes (Nalini et al., 2017). 

Based on macroscopic observations, the isolated actinomycetes exhibited similar 
characteristics, with white and whitish-brown colors (Table 1.). The actinomycete isolates 
displayed varying aerial and substrate mycelium. On SCA media, all four isolates showed densely 
packed colony consistency, with colonies T.3, T.4, and T.5 exhibiting dry, powdery colony 
characteristics. The macroscopic features can be seen in Figure 1. Based on the Gram staining 
results, all isolates showed gram-positive characteristics (purple) and displayed filamentous cell 
morphology. 

 
Table 1. Colony morphological characteristics. 

Isolate B.4 T.3 T.4 T.5 

Shape Irregular Circular Circular Circular 

Elevation Raised Flat Raised Umbonate 

Edge Undulate Entire Entire Entire 

Aerial mycelium White White Gray White-brown 

Substrate mycelium White White-brown Grayish-white Brown 

 
Several studies have provided evidence of the antimicrobial activity exhibited by 

Actinomycetes (Chen et al., 2021; Sarika et al., 2021). The antagonist test, a rapid and effective 
method yielding tangible outcomes, was employed to evaluate the potency of Actinomycetes 
(Rozirwan et al., 2020). The antibacterial assay was conducted using the agar plug method to 
quantitatively determine the formation of inhibition zones. Actinomycetes were cultivated on 
SCA media, and during their growth, microbial cells released various bioactive compounds that 
diffused into the agar medium. After incubation, agar plugs with a diameter of 6 mm containing 
Actinomycetes were placed onto NA media that had been inoculated with the test bacteria. 
Substances diffused from the agar plugs into the NA media. Subsequently, the antimicrobial 
activity of the secreted molecules was detected by the appearance of inhibition zones 
surrounding the Actinomycete plugs.  
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Figure 1. Colony morphology of actinomycete isolates (a) T.3, (b) T.5 and microscopic features 

of actinomycete isolates (c) T.3, (d) T.5. 
 

The Actinomycete isolates demonstrated antibacterial activity against Staphylococcus 
aureus and Escherichia coli, forming clear inhibition zones around the Actinomycete plugs. The 
agar plug method, as described by Balouiri et al. (2016), was employed to assess antibacterial 
activity, where microbial plugs inoculated onto the test media diffused into the agar, resulting in 
the secretion of antibacterial compounds by the microorganisms. Clear inhibition zones 
surrounding the Actinomycete plugs indicated antibacterial activity. All four Actinomycete 
isolates tested against Staphylococcus aureus exhibited inhibition or clear zones around the 
Actinomycete plugs (Figure 2.). However, among the four Actinomycete isolates tested against 
Escherichia coli, only three isolates produced inhibition zones or clear zones, as isolate T.5 did not 
show a clear zone. Isolate T.3 displayed the largest inhibition zone, measuring 8.5 mm against S. 
aureus, while separating B.4 showed the highest inhibition zone of 7.7 mm against E. coli (Figure 
3.). Considering that all isolates exhibited inhibition zones ranging from 5 to 10 mm, the activity 
of all isolates can be categorized as moderate. 
 

 
Figure 2. Antibacterial activity of actinomycete isolates against Staphylococcus aureus (a) and 

Escherichia coli (b). 
  

 
Figure 3. Zone inhibition of the antibacterial activity of actinomycete isolates against 

Staphylococcus aureus and Escherichia coli 
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The inhibition mechanism of bacterial growth by antimicrobial compounds can occur 

through various processes, including cell damage by inhibiting cell wall formation, disrupting the 
cytoplasmic membrane's permeability, leading to cellular fluid leakage, and modifying protein 
and nucleic acid molecules. The ability to inhibit the tested microorganisms obtained from 
potential isolates may also be influenced by bacterial communication patterns or quorum 
sensing, which regulate metabolic regulation. This allows bacteria to release specific compounds 
into the environment to prevent the colonization of other bacteria (Lubis, 2015). 

The antibacterial test results indicated that Staphylococcus aureus demonstrated a greater 
susceptibility to the metabolites or antibacterial compounds produced by Actinomycetes than 
Escherichia coli. This finding is consistent with the research conducted by Budhathoki & Shrestha 
(2020) who reported that Staphylococcus aureus displayed the highest susceptibility among 12 
Actinomycete isolates obtained from the soil. Furthermore, the inhibition zones formed around 
Staphylococcus aureus, a gram-positive bacterium, were more significant than those observed 
around gram-negative test bacteria, indicating a higher activity of the Actinomycete isolates 
against gram-positive bacteria. This difference in antibacterial activity could be attributed to 
variations in the cell morphology between gram-positive and gram-negative bacteria and the 
specific mode of action of the antibiotic compounds targeting the components of gram-positive 
cell walls more effectively than gram-negative cell components. 

The disparity in the formation of inhibition zones between gram-positive and gram-
negative bacteria is primarily influenced by differences in the composition of their respective cell 
walls (Aminingsih et al., 2012). Notably, as a gram-positive bacterium, Staphylococcus aureus 
possesses a structurally simpler cell wall with lower lipid content. In contrast, Escherichia coli, a 
gram-negative bacterium, exhibits a more complex cell wall structure characterized by a higher 
content of complex lipids. Consequently, the cell wall of gram-negative bacteria presents more 
excellent resistance to the penetration of antibacterial substances. 

Actinobacteria can synthesize diverse secondary metabolites with critical 
pharmacological properties (Anandan et al., 2016). This has resulted in identifying a wide range 
of antibiotic compounds, predominantly from the Streptomyces genus. Numerous potent 
secondary metabolites and antibiotics are among the approximately 7600 compounds discovered 
to be produced by the Streptomyces genus. Consequently, Streptomycetes have emerged as the 
predominant microorganisms responsible for the synthesis of antibiotics that are extensively 
employed by the pharmaceutical sector. 
 
Conclusion 
 

Among the isolates tested, four of them exhibited inhibitory effects against Staphylococcus 
aureus. In contrast, only three isolates (B.4, T.3, and T.4) demonstrated inhibitory activity against 
Escherichia coli, as evidenced by inhibition zones. Notably, isolate T.3 displayed the highest 
inhibition zone, measuring 8.5 ± 0,56 mm, against S. aureus, whereas B.4 exhibited the most 
significant inhibition zone of 7.7± 0,21 mm against E. coli. These findings highlight the 
antibacterial properties of actinomycetes derived from clove plants (Syzygium aromaticum) 
against both S. aureus and E. coli, suggesting their potential as effective antibacterial agents. 
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