

Available online at http://journal.walisongo.ac.id/index.php/jnsmr

Complete purely algebraic proof of the homomorphism between $S U(2)$ and $S O(3)$ without concerning their topological properties

Muhammad Ardhi Khalif ${ }^{1}$, Nur Farida Amalia ${ }^{2}$
${ }^{1}$ Physics Department, Universitas Islam Negeri Walisongo Semarang, Indonesia
${ }^{2}$ Physics Department, Universitas Diponegoro, Indonesia

Corresponding author : muhammad_ ardhi@walisongo.ac.id Received : 28 October 2022, Revised : 14 November 2022, Accepted : 30 December 2022.

Abstract

The aim of this paper is to provide a complete purely algebraic proof of homomorphism between $S U(2)$ and $S O(3)$ without concerning the topology of both groups. The proof is started by introducing a $\operatorname{map} \varphi: S U(2) \rightarrow M L(3, \mathbb{C})$ defined as $[\varphi(U)]^{i}{ }_{j} \equiv \frac{1}{2} \operatorname{tr}\left(\sigma_{i} U \sigma_{j} U^{\dagger}\right)$. Firstly we proof that the map φ satisfies $\left[\varphi\left(U_{1} U_{2}\right)\right]^{i}{ }_{j}=\left[\varphi\left(U_{1}\right)\right]^{i}{ }_{k}\left[\varphi\left(U_{2}\right)\right]^{k}{ }_{j}$, for every $U_{1}, U_{2} \in S U(2)$. The next step is to show that the collection of $\varphi(U)$ is having orthogonal property and every $\varphi(U)$ has determinant of 1 . After that, we proof that $\varphi\left(\mathbb{I}_{2}\right)=\mathbb{I}_{3}$. Finally, to make sure that φ is indeed a homomorphism, not an isomorphism, we proof that $\varphi(-U)=\varphi(U)$, $\forall U \in S U(2)$.

(C) 2022 JNSMR UIN Walisongo. All rights reserved.

Keywords : homomorphism, rotation group, orthogonal group

1. Introduction

The study of rotation groups has been carried out in both mathematics and physics and in various topics. Discrete rotation has been studied in $[14,16]$. Topologically and geometrically, rotation group has been studied in $[17,22,8,20,18,7,19]$. In representation theory, rotation groups has been studied in $[2,16,1$, $4,15]$. In physics, the application of rotation group has been discussed in $[24,1,11,10,25]$.
Any transformation in a vector space are classified as rotation transformation if it preserve the norm of vectors in that vector space. Some authors called it as orthogonal transformations [12]. The set of rotation transformations in a vector space usually form a group classified as rotation group.
As an example, if we let the vector space is \mathbb{R}^{3},
then the rotation group in that space is $S O(3)$, which is defined by[24]

$$
\begin{equation*}
S O(3) \equiv\left\{A \in G L(3, \mathbb{R}) \mid A A^{T}=A^{T} A=\mathbb{I}_{3}\right\} \tag{1}
\end{equation*}
$$

As another example, if we let the vector space is \mathbb{H}, a space of all 2×2 complex hermitian traceless matrices, that is[24]

$$
\begin{equation*}
\mathbb{H} \equiv\left\{H \in M L(2, \mathbb{C}) \mid H^{\dagger}=H \text { dan } \operatorname{tr}(H)=0\right\} \tag{2}
\end{equation*}
$$

then the rotation group is $\operatorname{SU}(2)$ which is defined by [24]

$$
\begin{align*}
S U(2) \equiv\left\{U \in G L(2, \mathbb{C}) \mid U^{\dagger} U=U U^{\dagger}\right. & =\mathbb{I}_{2} \\
\text { and } \operatorname{det}(U) & =1\} . \tag{3}
\end{align*}
$$

We also know that one of the topological properties of $S U(2)$ is simply connectedness [9]. Meanwhile, $S O(3)$ is not a simply connected topological group[23].

In various literatures discussing groups $S U(2)$ and $S O(3)$, we usually find a statetement that there is a homomorphism from $S U(2)$ to $S O(3)$. The homomorphism of group $S U(2)$ to $S O(3)$ play an important role in quantum mechanics, especially when we dealing with electron spin of Pauli theory [$3,13,21$]. Cornwell in [5] give the proof by considering the simply connectedness of $S U(2)$, especially when arguing that the homomorphism maps any elements of $S U(2)$ into $S O(3)$, rather than into $O(3)$. Donchev et.al in [6] gave the proof by using the Cayley maps for the isomorphic Lie algebras $\mathfrak{s u}(2)$ and $\mathfrak{s o}(3)$. Sattinger and Weaver in [23] construct the homomorphism between $S U(2)$ to $S O(3)$ by creating mobius transformation for a rotation of $S O(3)$.
Nevertheless, as long as our searching in various literatures, we never found a complete explicit computation of homomorphism from $S U(2)$ to $S O(3)$ by purely algebraic ways, without concerning their topology. Motivated by this fact, in this paper we give an explicit complete purely algebraic proof of homomorphism of $S U(2)$ to $S O(3)$ without concerning their topological properties. We hope this research will give an alternatif explanation of homomorphism $S U(2)$ to $S O(3)$ without having to learn topology first.

2. Rotation in \mathbb{R}^{3}

Each element X in \mathbb{R}^{3} can be expressed in the following form

$$
X=\left(\begin{array}{l}
x^{1} \tag{4}\\
x^{2} \\
x^{3}
\end{array}\right)
$$

where $x^{1}, x^{2}, x^{3} \in \mathbb{R}$. The norm of X is defined by

$$
\begin{equation*}
|X|^{2}=X^{T} X=\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2}+\left(x^{3}\right)^{2} \tag{5}
\end{equation*}
$$

Every $A \in S O(3)$ is a rotation transformation in \mathbb{R}^{3} since if $X^{\prime}=A X$, where $X \in \mathbb{R}^{3}$, then it follow that

$$
\begin{align*}
\left|X^{\prime}\right|^{2} & =X^{\prime T} X^{\prime}=(A X)^{T}(A X)=X^{T} A^{T} A X \\
& =X^{T} \mathbb{I}_{3} X=X^{T} X=|X|^{2} \tag{6}
\end{align*}
$$

3. Rotation in \mathbb{H}

According to the definition of \mathbb{H}, every $V \in \mathbb{H}$ may be expressed in the following form

$$
V=\left(\begin{array}{cc}
x^{3} & x^{1}-i x^{2} \tag{7}\\
x^{1}+i x^{2} & -x^{3}
\end{array}\right) .
$$

One of bases in the vector space \mathbb{H} are the following three Pauli matrices

$$
\sigma_{1}=\left(\begin{array}{ll}
0 & 1 \tag{8}\\
1 & 0
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

so that each vector $V \in \mathbb{H}$ may be expressed as follow

$$
\begin{equation*}
V=x^{1} \sigma_{1}+x^{2} \sigma_{2}+x^{3} \sigma_{3}=x^{i} \sigma_{i} . \tag{9}
\end{equation*}
$$

Note that the above three Pauli matrices satisfy the following properties

$$
\begin{align*}
\operatorname{tr}\left(\sigma_{i}\right) & =0 \tag{10}\\
\sigma_{i}^{\dagger} & =\sigma_{i} \tag{11}\\
\sigma_{i} \sigma_{j} & =i \epsilon_{i j k} \sigma_{k}+\delta_{i j} \mathbb{I}_{2} \tag{12}
\end{align*}
$$

for all $i, j, k=1,2,3$, where $\epsilon_{i j k}$ is defined by

$$
\epsilon_{i j k}=\left\{\begin{array}{lc}
1, & (i j k)=(123),(231),(312) \tag{13}\\
-1, & (i j k)=(213),(132),(321) \\
0, & \text { others }
\end{array}\right.
$$

and $\delta_{i j}$ is a kronecker delta defined by

$$
\delta_{i j}= \begin{cases}1, & i=j \tag{14}\\ 0, & i \neq j\end{cases}
$$

The norm of $V \in \mathbb{H}$ is defined by

$$
\begin{equation*}
|V|^{2} \equiv-\operatorname{det}(V)=\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2}+\left(x^{3}\right)^{2} \tag{15}
\end{equation*}
$$

The rotation of V by $U \in S U(2)$ is defined by

$$
\begin{equation*}
V^{\prime} \equiv U V U^{\dagger} \tag{16}
\end{equation*}
$$

since V^{\prime} is hermitian matrix, that is

$$
\begin{equation*}
V^{\prime \dagger}=\left(U V U^{\dagger}\right)^{\dagger}=\left(U^{\dagger}\right)^{\dagger} V^{\dagger} U^{\dagger}=U V U^{\dagger}=V^{\prime} \tag{17}
\end{equation*}
$$

and traceless, that is

$$
\begin{align*}
\operatorname{tr}\left(V^{\prime}\right) & =\operatorname{tr}\left(U V U^{\dagger}\right)=\operatorname{tr}\left(V U^{\dagger} U\right)=\operatorname{tr}\left(V \mathbb{I}_{2}\right) \tag{18}\\
& =\operatorname{tr}(V)=0
\end{align*}
$$

and also having same norm as V, that is

$$
\begin{align*}
\left|V^{\prime}\right|^{2} & =-\operatorname{det}\left(V^{\prime}\right)=-\operatorname{det}\left(U V U^{\dagger}\right) \\
& =-\operatorname{det}(U) \operatorname{det}(V) \operatorname{det}\left(U^{\dagger}\right) \tag{19}\\
& =-1 \cdot \operatorname{det}(V) \cdot 1=-\operatorname{det}(V)=|V|^{2} .
\end{align*}
$$

4. Homomorphism from $S U(2)$ to $S O(3)$

In order to find a homomorphism from $S U(2)$ to $S O(3)$, we note that $V^{\prime}=x^{\prime i} \sigma_{i}=U V U^{\dagger}$ and $V=$ $x^{i} \sigma_{i}$. Hence, by using eq.(12) we obtain

$$
\begin{align*}
x^{\prime i} & =\frac{1}{2} \operatorname{tr}\left(\sigma_{i} V^{\prime}\right)=\frac{1}{2} \operatorname{tr}\left(\sigma_{i} U V U^{\dagger}\right) \\
& =\frac{1}{2} \operatorname{tr}\left(\sigma_{i} U x^{j} \sigma_{j} U^{\dagger}\right) . \tag{20}\\
& =\frac{1}{2} \operatorname{tr}\left(\sigma_{i} U \sigma_{j} U^{\dagger}\right) x^{j} .
\end{align*}
$$

Meanwhile we know that if a vector $X=$ $\left(x^{1} x^{2} x^{3}\right)^{T} \in \mathbb{R}^{3}$ is transformed by $A \in O(3)$, then we will get a new vector, say $V^{\prime}=\left(x^{\prime 1} x^{\prime 2} x^{\prime 3}\right)^{T}$, according to formula

$$
\begin{equation*}
x^{\prime i}=[A]^{i}{ }_{j} x^{j} . \tag{21}
\end{equation*}
$$

Hence we may conclude that the entries of matrix $A \in$ $S O(3)$ may be written in the expression of the Pauli matrices as follow

$$
\begin{equation*}
[A]_{j}^{i}=\frac{1}{2} \operatorname{tr}\left(\sigma_{i} U \sigma_{j} U^{\dagger}\right) . \tag{22}
\end{equation*}
$$

More over, we can try to start from $\operatorname{a} \operatorname{map} \varphi$: $S U(2) \rightarrow M L(3, \mathbb{C})$ defined by

$$
\begin{equation*}
[\varphi(U)]_{j}^{i} \equiv \frac{1}{2} \operatorname{tr}\left(\sigma_{i} U \sigma_{j} U^{\dagger}\right), \tag{23}
\end{equation*}
$$

and then show that $[\varphi(U)]$ is in $S O(3)$ whenever $U \in S U(2)$. According to eq.22, eq. 21 and eq.20, it is clear that that $\varphi(U)$ defined in eq. 23 is belong to $O(3)$. However in this article we will show that $\varphi(U)$ in eq.(23) is an element of $O(3)$ by using the property of orthogonality of the elements of $O(3)$, i.e. for every $A \in O(3)$ we have

$$
\begin{equation*}
A A^{T}=A^{T} A=\mathbb{I}_{3} \tag{24}
\end{equation*}
$$

Now for first callculation we will prove that the map φ satisfy

$$
\begin{equation*}
\left[\varphi\left(U_{1} U_{2}\right)\right]_{j}^{i}=\left[\varphi\left(U_{1}\right)\right]^{i}{ }_{k}\left[\varphi\left(U_{2}\right)\right]^{k}, \tag{25}
\end{equation*}
$$

for every $U_{1}, U_{2} \in S U(2)$. This will provide us the homomorphism property of the maps defined in eq.(23). By using eq.(23), the right side of eq.(25) become

$$
\begin{align*}
{\left[\varphi\left(U_{1}\right)\right]_{k}^{i}\left[\varphi\left(U_{2}\right)\right]^{k}{ }_{j} } & =\frac{1}{2} \operatorname{tr}\left(\sigma_{i} U_{1} \sigma_{k} U_{1}^{\dagger}\right) \frac{1}{2} \operatorname{tr}\left(\sigma_{k} U_{2} \sigma_{j} U_{2}^{\dagger}\right) \\
& =\frac{1}{4} \operatorname{tr}\left(\sigma_{k} U_{1}^{\dagger} \sigma_{i} U_{1}\right) \operatorname{tr}\left(\sigma_{k} U_{2} \sigma_{j} U_{2}^{\dagger}\right) \\
& =\frac{1}{4} \operatorname{tr}\left(\sigma_{k} \Omega_{1 i}\right) \operatorname{tr}\left(\sigma_{k} \Omega_{2 j}^{\prime}\right) \tag{26}
\end{align*}
$$

where

$$
\begin{equation*}
\Omega_{k i} \equiv U_{k}^{\dagger} \sigma_{i} U_{k}, \quad \Omega_{k i}^{\prime} \equiv U_{k} \sigma_{i} U_{k}^{\dagger} \tag{27}
\end{equation*}
$$

According to the definition of trace, eq.(26) become

$$
\begin{align*}
{\left[\varphi\left(U_{1}\right)\right]_{k}^{i}\left[\varphi\left(U_{2}\right)\right]^{k}{ }_{j} } & =\frac{1}{4}\left(\left[\sigma_{k}\right]_{\beta}^{\alpha}\left[\Omega_{1 i}\right]_{\alpha}^{\beta}\right)\left(\left[\sigma_{k}\right]^{\gamma}{ }_{\delta}\left[\Omega_{2 j}^{\prime}\right]_{\gamma}^{\delta}\right) \\
& =\frac{1}{4} \Xi^{\alpha \gamma}{ }_{\beta \delta}\left[\Omega_{1 i}\right]^{\beta}{ }_{\alpha}\left[\Omega_{2 j}^{\prime}\right]^{\delta}{ }_{\gamma}, \tag{28}
\end{align*}
$$

where

$$
\begin{equation*}
\Xi^{\alpha \gamma}{ }_{\beta \delta} \equiv\left[\sigma_{k}\right]^{\alpha}{ }_{\beta}\left[\sigma_{k}\right]^{\gamma}{ }_{\delta} . \tag{29}
\end{equation*}
$$

Note that since $\alpha, \beta, \gamma, \delta=1,2$ there are 16 combinations of $\alpha, \beta, \gamma, \delta$. The computation of those 16 values of $\Xi^{\alpha \gamma}{ }_{\beta \delta}$ are given below :

$$
\begin{aligned}
\Xi^{11}{ }_{11} & =\left[\sigma_{1}\right]_{1}^{1}\left[\sigma_{1}\right]^{1}{ }_{1}+\left[\sigma_{2}\right]^{1}{ }_{1}\left[\sigma_{2}\right]_{1}^{1}+\left[\sigma_{3}\right]^{1}{ }_{1}\left[\sigma_{3}\right]^{1}{ }_{1} \\
& =0+0+1=1 \\
\Xi^{11}{ }_{12} & =\left[\sigma_{1}\right]_{1}^{1}\left[\sigma_{1}\right]^{1}{ }_{2}+\left[\sigma_{2}\right]^{1}{ }_{1}\left[\sigma_{2}\right]^{1}{ }_{2}+\left[\sigma_{3}\right]^{1}{ }_{1}\left[\sigma_{3}\right]^{1}{ }_{2} \\
& =0+0+0=0 \\
\Xi^{11}{ }_{21} & =\left[\sigma_{1}\right]^{1}{ }_{2}\left[\sigma_{1}\right]^{1}{ }_{1}+\left[\sigma_{2}\right]^{1}{ }_{2}\left[\sigma_{2}\right]^{1}{ }_{1}+\left[\sigma_{3}\right]^{1}{ }_{2}\left[\sigma_{3}\right]^{1}{ }_{1} \\
& =0+0+0=0 \\
\Xi^{12}{ }_{11} & =\left[\sigma_{1}\right]_{1}^{1}\left[\sigma_{1}\right]^{2}+\left[\sigma_{2}\right]^{1}{ }_{1}\left[\sigma_{2}\right]^{2}{ }_{1}+\left[\sigma_{1}\right]^{1}{ }_{1}\left[\sigma_{3}\right]^{2}{ }_{1} \\
& =0+0+0=0
\end{aligned}
$$

$$
\begin{aligned}
& \Xi^{21}{ }_{11}=\left[\sigma_{1}\right]^{2}{ }_{1}\left[\sigma_{1}\right]^{1}{ }_{1}+\left[\sigma_{2}\right]^{2}{ }_{1}\left[\sigma_{2}\right]^{1}{ }_{1}+\left[\sigma_{3}\right]^{2}{ }_{1}\left[\sigma_{3}\right]^{1}{ }_{1} \\
& =0+0+0=0 \\
& \Xi^{11}{ }_{22}=\left[\sigma_{1}\right]^{1}{ }_{2}\left[\sigma_{1}\right]^{1}{ }_{2}+\left[\sigma_{2}\right]^{1}{ }_{2}\left[\sigma_{2}\right]^{1}{ }_{2}+\left[\sigma_{3}\right]^{1}{ }_{2}\left[\sigma_{3}\right]^{1}{ }_{2} \\
& =1+(-1)+0=0 \\
& \Xi^{12}{ }_{12}=\left[\sigma_{1}\right]^{1}{ }_{1}\left[\sigma_{1}\right]^{2}{ }_{2}+\left[\sigma_{2}\right]^{1}{ }_{1}\left[\sigma_{2}\right]^{2}{ }_{2}+\left[\sigma_{3}\right]^{1}{ }_{1}\left[\sigma_{3}\right]^{2}{ }_{2} \\
& =0+0+(-1)=-1 \\
& \Xi^{21}{ }_{12}=\left[\sigma_{1}\right]^{2}{ }_{1}\left[\sigma_{1}\right]^{1}{ }_{2}+\left[\sigma_{2}\right]^{2}{ }_{1}\left[\sigma_{2}\right]^{1}{ }_{2}+\left[\sigma_{3}\right]^{2}{ }_{1}\left[\sigma_{3}\right]^{1}{ }_{2} \\
& =1+1+0=2 \\
& \Xi^{21}{ }_{21}=\Xi^{12}{ }_{12}=-1 \\
& \Xi^{22}{ }_{11}=\left[\sigma_{1}\right]^{2}{ }_{1}\left[\sigma_{1}\right]^{2}{ }_{1}+\left[\sigma_{2}\right]^{2}{ }_{1}\left[\sigma_{2}\right]^{2}{ }_{1}+\left[\sigma_{3}\right]^{2}{ }_{1}\left[\sigma_{3}\right]^{2}{ }_{1} \\
& =1+(-1)+0=0 \\
& \Xi^{12}{ }_{21}=\Xi^{21}{ }_{12}=2 \\
& \Xi^{12}{ }_{22}=\left[\sigma_{1}\right]^{1}{ }_{2}\left[\sigma_{1}\right]^{2}{ }_{2}+\left[\sigma_{2}\right]^{1}{ }_{2}\left[\sigma_{2}\right]^{2}{ }_{2}+\left[\sigma_{3}\right]^{1}{ }_{2}\left[\sigma_{3}\right]^{2}{ }_{2} \\
& =0+0+0=0 \\
& \Xi^{21}{ }_{22}=\Xi^{12}{ }_{22}=0 \\
& \Xi^{22}{ }_{12}=\left[\sigma_{1}\right]^{2}{ }_{1}\left[\sigma_{1}\right]^{2}{ }_{2}+\left[\sigma_{2}\right]^{2}{ }_{1}\left[\sigma_{2}\right]^{2}{ }_{2}+\left[\sigma_{3}\right]^{2}{ }_{1}\left[\sigma_{3}\right]^{2}{ }_{2} \\
& =0+0+0=0 \\
& \Xi^{22}{ }_{21}=\Xi^{22}{ }_{12}=0 \\
& \Xi^{22}{ }_{22}=\left[\sigma_{1}\right]^{2}{ }_{2}\left[\sigma_{1}\right]^{2}{ }_{2}+\left[\sigma_{2}\right]^{2} 2\left[\sigma_{2}\right]^{2}{ }_{2}+\left[\sigma_{3}\right]^{2}{ }_{2}\left[\sigma_{3}\right]^{2}{ }_{2} \\
& =0+0+1=1 \text {. }
\end{aligned}
$$

By using the above 16 values of $\Xi^{\alpha \gamma}{ }_{\beta \delta}$, eq.(28) become

$$
\begin{aligned}
{\left[\varphi\left(U_{1}\right)\right]^{i} } & {\left[\varphi\left(U_{2}\right)\right]^{k}{ }_{j}=} \\
& \frac{1}{4}\left([\Omega _ { 1 i }] ^ { 1 } \left[{ }_{1}\left[\Omega_{2 j}^{\prime}\right]^{1}{ }_{1}+\left[\Omega_{1 i}\right]^{2}{ }_{2}\left[\Omega_{2 j}^{\prime}\right]^{2}{ }_{2}\right.\right. \\
& +2\left[\Omega_{1 i}\right]^{1}\left[\Omega_{2 j}^{\prime}\right]^{2} \\
& +2\left[\Omega_{1 i}\right]^{2}\left[\Omega_{2 j}^{\prime}\right]^{1}-\left[\Omega_{1 i}\right]_{1}^{1}\left[\Omega_{2 j}^{\prime}\right]^{2}{ }_{2} \\
& \left.-\left[\Omega_{1 i}\right]_{2}\left[\Omega_{2 j}^{\prime}\right]^{1}{ }_{1}\right)
\end{aligned}
$$

$$
\begin{align*}
& =\frac{1}{4}\left(2 \left(\left[\Omega_{1 i}\right]^{1}{ }_{1}\left[\Omega_{2 j}^{\prime}\right]^{1}{ }_{1}+\left[\Omega_{1 i}\right]_{2}^{2}\left[\Omega_{2 j}^{\prime}\right]^{2}{ }_{2}\right.\right. \\
& \left.+\left[\Omega_{1 i}\right]^{1}{ }_{2}\left[\Omega_{2 j}^{\prime}\right]^{2}{ }_{1}+\left[\Omega_{1 i}\right]^{2}{ }_{1}\left[\Omega_{2 j}^{\prime}\right]^{1}{ }_{2}\right) \\
& -\left(\left[\Omega_{1 i}\right]^{1}{ }_{1}\left[\Omega_{2 j}^{\prime}\right]^{1}{ }_{1}+\left[\Omega_{1 i}\right]^{2}{ }_{2}\left[\Omega_{2 j}^{\prime}\right]^{2}{ }_{2}\right. \\
& \left.\left.+\left[\Omega_{1 i}\right]_{1}^{1}\left[\Omega_{2 j}^{\prime}\right]^{2}{ }_{2}+\left[\Omega_{1 i}\right]^{2}{ }_{2}\left[\Omega_{2 j}^{\prime}\right]^{1}{ }_{1}\right)\right) \\
& =\frac{1}{4}\left(2 \cdot \operatorname{tr}\left(\left[\Omega_{1 i}\right]\left[\Omega_{2 j}^{\prime}\right]\right)\right. \\
& -\left(\left[\Omega_{1 i}\right]_{1}^{1}{ }_{1}\left[\Omega_{2 j}^{\prime}\right]^{1}{ }_{1}+\left[\Omega_{1 i}\right]^{2}{ }_{2}\left[\Omega_{2 j}^{\prime}\right]^{2}{ }_{2}\right. \\
& \left.\left.+\left[\Omega_{1 i}\right]^{1}{ }_{1}\left[\Omega_{2 j}^{\prime}\right]^{2}{ }_{2}+\left[\Omega_{1 i}\right]^{2}{ }_{2}\left[\Omega_{2 j}^{\prime}\right]^{1}{ }_{1}\right)\right) \\
& =\frac{1}{4}\left(2 \cdot \operatorname{tr}\left(\left[\Omega_{1 i}\right]\left[\Omega_{2 j}^{\prime}\right]\right)\right. \\
& -\left(\left[\Omega_{1 i}\right]^{1}{ }_{1}\left(\left[\Omega_{2 j}^{\prime}\right]_{1}^{1}+\left[\Omega_{2 j}^{\prime}\right]^{2}{ }_{2}\right)\right. \\
& \left.\left.+\left[\Omega_{1 i}\right]^{2}{ }_{2}\left(\left[\Omega_{2 j}^{\prime}\right]_{1}^{1}+\left[\Omega_{2 j}^{\prime}\right]^{2}{ }_{2}\right)\right)\right) \\
& =\frac{1}{4}\left(2 \cdot \operatorname{tr}\left(\left[\Omega_{1 i}\right]\left[\Omega_{2 j}^{\prime}\right]\right)\right. \\
& \left.-\left(\left(\left[\Omega_{1 i}\right]_{1}^{1}+\left[\Omega_{1 i}\right]^{2}{ }_{2}\right)\left(\left[\Omega_{2 j}^{\prime}\right]_{1}^{1}+\left[\Omega_{2 j}^{\prime}\right]^{2}{ }_{2}\right)\right)\right) \\
& =\frac{1}{4}\left(2 \cdot \operatorname{tr}\left(\left[\Omega_{1 i}\right]\left[\Omega_{2 j}^{\prime}\right]\right)-\left(\operatorname{tr}\left(\Omega_{1 i}\right) \operatorname{tr}\left(\Omega_{2 j}^{\prime}\right)\right)\right) \tag{30}
\end{align*}
$$

According to the definition given in (27) and the properties of σ_{i} given in eq.(11) and (10) then $\Omega_{k i}$ and $\Omega_{k i}^{\prime}$ are hermitian matrices, because

$$
\begin{align*}
& \Omega_{k i}^{\dagger}=\left(U_{k} \sigma_{i} U_{k}^{\dagger}\right)^{\dagger}=U_{k} \sigma_{i} U_{k}^{\dagger}=\Omega_{k i}, \\
& \Omega_{k i}^{\prime \dagger}=\left(U_{k}^{\dagger} \sigma_{i} U_{k}\right)^{\dagger}=U_{k}^{\dagger} \sigma_{i} U_{k}=\Omega_{k i}^{\prime}, \tag{31}
\end{align*}
$$

and they are also traceless because

$$
\begin{align*}
& \operatorname{tr}\left(\Omega_{k i}\right)=\operatorname{tr}\left(U_{k} \sigma_{i} U_{k}^{\dagger}\right)=\operatorname{tr}\left(U_{k}^{\dagger} U_{k} \sigma_{i}\right)=\operatorname{tr}\left(\sigma_{i}\right)=0 \\
& \operatorname{tr}\left(\Omega_{k i}^{\prime}\right)=\operatorname{tr}\left(U_{k}^{\dagger} \sigma_{i} U_{k}\right)=\operatorname{tr}\left(U_{k} U_{k}^{\dagger} \sigma_{i}\right)=\operatorname{tr}\left(\sigma_{i}\right)=0 \tag{32}
\end{align*}
$$

By using the two properties of $\Omega_{k i}$ and $\Omega_{k i}^{\prime}$ above, eq.(30) may be written as follows

$$
\begin{align*}
{\left[\varphi\left(U_{1}\right)\right]^{i}{ }_{k}\left[\varphi\left(U_{2}\right)\right]_{j}^{k}=} & \frac{1}{4}\left(2 \cdot \operatorname{tr}\left(\left[\Omega_{1 i}\right]\left[\Omega_{2 j}^{\prime}\right]\right)\right. \\
& \left.-\left(\operatorname{tr}\left(\Omega_{1 i}\right) \operatorname{tr}\left(\Omega_{2 j}^{\prime}\right)\right)\right) \\
= & \frac{1}{4}\left(2 \cdot \operatorname{tr}\left(\left[\Omega_{1 i}\right]\left[\Omega_{2 j}^{\prime}\right]\right)-0 \cdot 0\right) \\
= & \frac{1}{2} \operatorname{tr}\left(\left[\Omega_{1 i}\right]\left[\Omega_{2 j}^{\prime}\right]\right) \tag{33}
\end{align*}
$$

Finally, according to the definition of $\Omega_{k i}$ and $\Omega_{k i}^{\prime}$, we
get

$$
\begin{align*}
{\left[\varphi\left(U_{1}\right)\right]^{i}{ }_{k}\left[\varphi\left(U_{2}\right)\right]^{k}{ }_{j} } & =\frac{1}{2} \operatorname{tr}\left(\left[\Omega_{1 i}\right]\left[\Omega_{2 j}^{\prime}\right]\right) \\
& =\frac{1}{2} \operatorname{tr}\left(U_{1}^{\dagger} \sigma_{i} U_{1} U_{2} \sigma_{j} U_{2}^{\dagger}\right) \\
& =\frac{1}{2} \operatorname{tr}\left(\sigma_{i} U_{1} U_{2} \sigma_{j} U_{2}^{\dagger} U_{1}^{\dagger}\right) \tag{34}\\
& =\frac{1}{2} \operatorname{tr}\left(\sigma_{i}\left(U_{1} U_{2}\right) \sigma_{j}\left(U_{1} U_{2}\right)^{\dagger}\right) \\
& =\left[\varphi\left(U_{1} U_{2}\right)\right]^{i}{ }_{j} .
\end{align*}
$$

Next we will prove the following two conditions

$$
\begin{equation*}
\varphi(U) \varphi(U)^{T}=\mathbb{I}_{3} \quad \text { and } \quad \operatorname{det}(\varphi(U))=1 \tag{35}
\end{equation*}
$$

for all $U \in S U(2)$. The first condition is needed to ensure that the collections of $\varphi(U)$ is having orthogonal property and the second condition is needed to ensure that $\varphi(U)$ is belong to $S L(3, \mathbb{R})$, for every $U \in S U(2)$. The first condition may be written in the expression of matrix entries as follows

$$
\begin{equation*}
[\varphi(U)]^{i}{ }_{k}\left[\varphi(U)^{T}\right]^{k}{ }_{j}=\delta_{i j} . \tag{36}
\end{equation*}
$$

Since

$$
\begin{equation*}
\left[\varphi(U)^{T}\right]^{k}{ }_{j}=[\varphi(U)]_{k}^{j}=\frac{1}{2} \operatorname{tr}\left(\sigma_{j} U \sigma_{k} U^{\dagger}\right), \tag{37}
\end{equation*}
$$

then the left side of eq.(36) become

$$
\begin{align*}
{[\varphi(U)]_{k}^{i}\left[\varphi(U)^{T}\right]_{j}^{k} } & =\frac{1}{2} \operatorname{tr}\left(\sigma_{i} U \sigma_{k} U^{\dagger}\right) \frac{1}{2} \operatorname{tr}\left(\sigma_{j} U \sigma_{k} U^{\dagger}\right) \\
& =\frac{1}{4} \operatorname{tr}\left(\sigma_{k} U^{\dagger} \sigma_{i} U\right) \operatorname{tr}\left(\sigma_{k} U^{\dagger} \sigma_{j} U\right) \\
& =\frac{1}{4} \operatorname{tr}\left(\sigma_{k} \Omega_{i}\right) \operatorname{tr}\left(\sigma_{k} \Omega_{j}\right) . \tag{38}
\end{align*}
$$

By doing the similar computation as was done from eq.(28) until eq.(33), then the last equation become

$$
\begin{align*}
{[\varphi(U)]_{k}^{i}\left[\varphi(U)^{T}\right]_{j}^{k} } & =\frac{1}{2} \operatorname{tr}\left(\Omega_{i} \Omega_{j}\right) \\
& =\frac{1}{2} \operatorname{tr}\left(U^{\dagger} \sigma_{i} U U^{\dagger} \sigma_{j} U\right) \\
& =\frac{1}{2} \operatorname{tr}\left(U^{\dagger} \sigma_{i} \sigma_{j} U\right) \\
& =\frac{1}{2} \operatorname{tr}\left(U U^{\dagger} \sigma_{i} \sigma_{j}\right)=\frac{1}{2} \operatorname{tr}\left(\sigma_{i} \sigma_{j}\right) . \tag{39}
\end{align*}
$$

Next, by using eq.(12), eq.(39) become

$$
\begin{align*}
{[\varphi(U)]_{k}^{i}\left[\varphi(U)^{T}\right]_{j}^{k} } & =\frac{1}{2} \operatorname{tr}\left(i \epsilon_{i j k} \sigma_{k}+\delta_{i j} \mathbb{I}_{2}\right) \\
& =i \epsilon_{i j k} \frac{1}{2} \operatorname{tr}\left(\sigma_{k}\right)+\frac{1}{2} \delta_{i j} \operatorname{tr}\left(\mathbb{I}_{2}\right) . \tag{40}
\end{align*}
$$

However according to eq.(10) and $\operatorname{tr}\left(\mathbb{I}_{2}\right)=2$, we obtain

$$
\begin{equation*}
[\varphi(U)]^{i}\left[\varphi(U)^{T}\right]_{j}^{k}=\delta_{i j}, \tag{41}
\end{equation*}
$$

that is $\varphi(U) \in O(3), \forall U \in S U(2)$.
For the second condition in eq.(35), according to the definition of determinant of a matrix, $\operatorname{det}(\varphi(U))$ may be written in the following form

$$
\begin{equation*}
\operatorname{det}(\varphi(U))=\epsilon^{i j k}[\varphi(U)]_{i}^{1}[\varphi(U)]_{j}^{2}[\varphi(U)]_{k}^{3} . \tag{42}
\end{equation*}
$$

Using the definition of $\varphi(U)$, then we have

$$
\begin{align*}
\operatorname{det}(\varphi(U))= & \epsilon^{i j k} \frac{1}{2} \operatorname{tr}\left(\sigma_{1} U \sigma_{i} U^{\dagger}\right) \frac{1}{2} \operatorname{tr}\left(\sigma_{2} U \sigma_{j} U^{\dagger}\right) \\
& \times \frac{1}{2} \operatorname{tr}\left(\sigma_{3} U \sigma_{k} U^{\dagger}\right) \\
= & \frac{1}{8} \epsilon^{i j k} \operatorname{tr}\left(\sigma_{1} \Omega_{i}^{\prime}\right) \operatorname{tr}\left(\sigma_{1} \Omega_{j}^{\prime}\right) \operatorname{tr}\left(\sigma_{1} \Omega_{k}^{\prime}\right) \tag{43}\\
= & \frac{1}{8} \epsilon^{i j k}\left(\left[\sigma_{1}\right]^{\alpha}{ }_{\beta}\left[\Omega_{i}^{\prime}\right]_{\alpha}^{\beta}\right)\left(\left[\sigma_{2}\right]^{\gamma}{ }_{\delta}\left[\Omega_{j}^{\prime}\right]^{\delta}{ }_{\gamma}\right) \\
& \times\left(\left[\sigma_{3}\right]^{\mu}{ }_{\nu}\left[\Omega_{k}^{\prime}\right]^{\nu}{ }_{\mu}\right) \\
= & \frac{1}{8} \epsilon^{i j k} \Gamma^{\alpha \gamma \mu}{ }_{\beta \delta \nu}\left[\Omega_{i}^{\prime}\right]_{\alpha}^{\beta}\left[\Omega_{j}^{\prime}\right]_{\gamma}^{\delta}\left[\Omega_{k}^{\prime}\right]_{\mu}^{\nu},
\end{align*}
$$

where

$$
\begin{equation*}
\Gamma^{\alpha \gamma \mu}{ }_{\beta \delta \nu} \equiv\left[\sigma_{1}\right]^{\alpha}{ }_{\beta}\left[\sigma_{2}\right]_{\delta}^{\gamma}\left[\sigma_{3}\right]^{\mu}{ }_{\nu} . \tag{44}
\end{equation*}
$$

There are only 8 combinations of $\alpha, \delta, \mu, \beta, \delta, \nu$ having non zero values, that is

$$
\begin{align*}
& \Gamma^{111}{ }_{221}=\left[\sigma_{1}\right]^{1}{ }_{2}\left[\sigma_{2}\right]^{1}{ }_{2}\left[\sigma_{3}\right]^{1}{ }_{1}=1 \cdot(-i) \cdot 1=-i, \\
& \Gamma^{112}{ }_{222}=\left[\sigma_{1}\right]{ }_{2}{ }_{2}\left[\sigma_{2}\right]^{1}{ }_{2}\left[\sigma_{3}\right]^{2}{ }_{2}=1 \cdot(-i) \cdot(-1)=i, \\
& \Gamma^{121}{ }_{211}=\left[\sigma_{1}\right]^{1}{ }_{2}\left[\sigma_{2}\right]^{2}{ }_{1}\left[\sigma_{3}\right]^{1}{ }_{1}=1 \cdot(i) \cdot 1=i, \\
& \Gamma^{122}{ }_{212}=\left[\sigma_{1}\right]^{1}{ }_{2}\left[\sigma_{2}\right]^{2}{ }_{1}\left[\sigma_{3}\right]^{2}{ }_{2}=1 \cdot(i) \cdot(-1)=-i, \\
& \Gamma^{211}{ }_{121}=\left[\sigma_{1}\right]^{2}{ }_{1}\left[\sigma_{2}\right]^{1}{ }_{2}\left[\sigma_{3}\right]^{1}{ }_{1}=1 \cdot(-i) \cdot 1=-i, \\
& \Gamma^{212}{ }_{122}=\left[\sigma_{1}\right]^{2}{ }_{1}\left[\sigma_{2}\right]^{1}{ }_{2}\left[\sigma_{3}\right]^{2}{ }_{2}=1 \cdot(-i) \cdot(-1)=i, \\
& \Gamma^{221}{ }_{111}=\left[\sigma_{1}\right]^{2}{ }_{1}\left[\sigma_{2}\right]^{2}{ }_{1}\left[\sigma_{3}\right]^{1}{ }_{1}=1 \cdot(i) \cdot 1=i, \\
& \Gamma^{222}{ }_{112}=\left[\sigma_{1}\right]^{2}{ }_{1}\left[\sigma_{2}\right]^{2}{ }_{1}\left[\sigma_{3}\right]^{2}{ }_{2}=1 \cdot(i) \cdot(-1)=-i . \tag{45}
\end{align*}
$$

Now eq.(43) become

$$
\begin{aligned}
\operatorname{det}(\varphi(U))= & \frac{1}{8} \epsilon^{i j k}\left(-i\left[\Omega_{i}^{\prime}\right]_{1}^{2}\left[\Omega_{j}^{\prime}\right]^{2}{ }_{1}\left[\Omega_{k}^{\prime}\right]^{1}{ }_{1}\right. \\
& +i\left[\Omega_{i}^{\prime}\right]_{1}^{2}\left[\Omega_{j}^{\prime}\right]_{1}{ }_{1}\left[\Omega_{k}^{\prime}\right]^{2}{ }_{2} \\
& +i\left[\Omega_{i}^{\prime}\right]_{1}^{2}\left[\Omega_{j}^{\prime}\right]_{2}^{1}\left[\Omega_{k}^{\prime}\right]^{1}{ }_{1} \\
& -i\left[\Omega_{i}^{\prime}\right]_{1}^{2}\left[\Omega_{j}^{\prime}\right]_{2}^{1}\left[\Omega_{k}^{\prime}\right]^{2}{ }_{2} \\
& -i\left[\Omega_{i}^{\prime}\right]_{2}^{1}\left[\Omega_{j}^{\prime}\right]_{1}{ }_{1}\left[\Omega_{k}^{\prime}\right]^{1}{ }_{1} \\
& +i\left[\Omega_{i}^{\prime}\right]_{2}^{1}\left[\Omega_{j}^{\prime}\right]_{1}^{2}\left[\Omega_{k}^{\prime}\right]^{2}{ }_{2} \\
& +i\left[\Omega_{i}^{\prime}\right]_{2}^{1}\left[\Omega_{j}^{\prime}\right]_{2}^{1}\left[\Omega_{k}^{\prime}\right]_{1}^{1} \\
& \left.-i\left[\Omega_{i}^{\prime}\right]_{2}^{1}\left[\Omega_{j}^{\prime}\right]^{1}{ }_{2}\left[\Omega_{k}^{\prime}\right]^{2}{ }_{2}\right)
\end{aligned}
$$

By arranging the term we obtain

$$
\begin{align*}
& \operatorname{det}(\varphi(U))=\frac{1}{8} \epsilon^{i j k}\left(-i\left(\left[\Omega_{i}^{\prime}\right]^{2}{ }_{1}+\left[\Omega_{i}^{\prime}\right]^{1}{ }_{2}\right)\left[\Omega_{j}^{\prime}\right]^{2}{ }_{1}\left[\Omega_{k}^{\prime}\right]^{1}{ }_{1}\right. \\
& +i\left(\left[\Omega_{i}^{\prime}\right]^{2}{ }_{1}+\left[\Omega_{i}^{\prime}\right]^{1}{ }_{2}\right)\left[\Omega_{j}^{\prime}\right]^{2}{ }_{1}\left[\Omega_{k}^{\prime}\right]^{2}{ }_{2} \\
& +i\left(\left[\Omega_{i}^{\prime}\right]^{2}{ }_{1}+\left[\Omega_{i}^{\prime}\right]^{1}{ }_{2}\right)\left[\Omega_{j}^{\prime}\right]^{1}{ }_{2}\left[\Omega_{k}^{\prime}\right]^{1}{ }_{1} \\
& \left.-i\left(\left[\Omega_{i}^{\prime}\right]^{2}{ }_{1}+\left[\Omega_{i}^{\prime}\right]^{1}{ }_{2}\right)\left[\Omega_{j}^{\prime}\right]^{1}{ }_{2}\left[\Omega_{k}^{\prime}\right]^{2}{ }_{2}\right) \\
& =\frac{1}{8} \epsilon^{i j k}\left(i\left(\left[\Omega_{i}^{\prime}\right]^{2}{ }_{1}+\left[\Omega_{i}^{\prime}\right]^{1}{ }_{2}\right)\left[\Omega_{j}^{\prime}\right]^{2}{ }_{1}\left(\left[\Omega_{k}^{\prime}\right]^{2}{ }_{2}-\left[\Omega_{k}^{\prime}\right]^{1}{ }_{1}\right)\right. \\
& \left.-i\left(\left[\Omega_{i}^{\prime}\right]^{2}{ }_{1}+\left[\Omega_{i}^{\prime}\right]^{1}{ }_{2}\right)\left[\Omega_{j}^{\prime}\right]^{1}{ }_{2}\left(\left[\Omega_{k}^{\prime}\right]^{2}{ }_{2}-\left[\Omega_{k}^{\prime}\right]^{1}{ }_{1}\right)\right) \\
& =\frac{1}{8} i \epsilon^{i j k}\left(\left[\Omega_{i}^{\prime}\right]^{2}{ }_{1}+\left[\Omega_{i}^{\prime}\right]^{1}{ }_{2}\right)\left(\left[\Omega_{j}^{\prime}\right]^{2}{ }_{1}\right. \\
& \left.-\left[\Omega_{j}^{\prime}\right]^{1}{ }_{2}\right)\left(\left[\Omega_{k}^{\prime}\right]^{2}{ }_{2}-\left[\Omega_{k}^{\prime}\right]^{1}{ }_{1}\right) \\
& =\frac{1}{8} i \epsilon^{i j k}\left(\left[\Omega_{i}^{\prime}\right]_{1}^{2}\left[\Omega_{j}^{\prime}\right]_{1}^{2}\left(\left[\Omega_{k}^{\prime}\right]^{2}{ }_{2}-\left[\Omega_{k}^{\prime}\right]^{1}{ }_{1}\right)\right. \\
& -\left[\Omega_{i}^{\prime}\right]^{1}{ }_{2}\left[\Omega_{j}^{\prime}\right]^{1}{ }_{2}\left(\left[\Omega_{k}^{\prime}\right]^{2}{ }_{2}-\left[\Omega_{k}^{\prime}\right]^{1}{ }_{1}\right) \\
& +\left[\Omega_{i}^{\prime}\right]^{1}{ }_{2}\left[\Omega_{j}^{\prime}\right]^{2}{ }_{1}\left(\left[\Omega_{k}^{\prime}\right]^{2}{ }_{2}-\left[\Omega_{k}^{\prime}\right]^{1}{ }_{1}\right) \\
& \left.-\left[\Omega_{i}^{\prime}\right]_{1}^{2}\left[\Omega_{j}^{\prime}\right]^{1}{ }_{2}\left(\left[\Omega_{k}^{\prime}\right]^{2}{ }_{2}-\left[\Omega_{k}^{\prime}\right]^{1}{ }_{1}\right)\right) \\
& =\frac{1}{8} i \epsilon^{i j k}\left(\left[\Omega_{i}^{\prime}\right]^{1}{ }_{2}\left[\Omega_{j}^{\prime}\right]^{2}{ }_{1}-\left[\Omega_{i}^{\prime}\right]^{2}{ }_{1}\left[\Omega_{j}^{\prime}\right]^{1}{ }_{2}\right) \\
& \times\left(\left[\Omega_{k}^{\prime}\right]^{2}{ }_{2}-\left[\Omega_{k}^{\prime}\right]^{1}{ }_{1}\right) \tag{47}
\end{align*}
$$

$$
\begin{align*}
& =\frac{1}{8} i \epsilon^{i j k}\left(2 i \operatorname{Im}\left(\left[\Omega_{i}^{\prime}\right]_{2}^{1}\left[\Omega_{j}^{\prime}\right]^{2}{ }_{1}\right)\right)\left(-2\left[\Omega_{k}^{\prime}\right]^{1}{ }_{1}\right) \\
& =\frac{1}{2} \epsilon^{i j k} \operatorname{Im}\left(\left[\Omega_{i}^{\prime}\right]^{1}{ }_{2}\left[\Omega_{j}^{\prime}\right]^{2}{ }_{1}\right)\left[\Omega_{k}^{\prime}\right]^{1}{ }_{1} \\
& =\frac{1}{2}\left[\epsilon^{123} \operatorname{Im}\left(\left[\Omega_{1}^{\prime}\right]^{1}{ }_{2}\left[\Omega_{2}^{\prime}\right]^{2}{ }_{1}\right)\left[\Omega_{3}^{\prime}\right]^{1}{ }_{1}\right. \\
& +\epsilon^{213} \operatorname{Im}\left(\left[\Omega_{2}^{\prime}\right]^{1}{ }_{2}\left[\Omega_{1}^{\prime}\right]^{2}{ }_{1}\right)\left[\Omega_{3}^{\prime}\right]^{1}{ }_{1} \\
& +\epsilon^{312} \operatorname{Im}\left(\left[\Omega_{3}^{\prime}\right]^{1}{ }_{2}\left[\Omega_{1}^{\prime}\right]^{2}{ }_{1}\right)\left[\Omega_{2}^{\prime}\right]^{1}{ }_{1} \\
& +\epsilon^{132} \operatorname{Im}\left(\left[\Omega_{1}^{\prime}\right]_{2}^{1}\left[\Omega_{3}^{\prime}\right]^{2}{ }_{1}\right)\left[\Omega_{2}^{\prime}\right]^{1}{ }_{1} \\
& +\epsilon^{231} \operatorname{Im}\left(\left[\Omega_{2}^{\prime}\right]^{1}{ }_{2}\left[\Omega_{3}^{\prime}\right]^{2}{ }_{1}\right)\left[\Omega_{1}^{\prime}\right]^{1}{ }_{1} \\
& \left.+\epsilon^{321} \operatorname{Im}\left(\left[\Omega_{3}^{\prime}\right]^{1}{ }_{2}\left[\Omega_{2}^{\prime}\right]^{2}{ }_{1}\right)\left[\Omega_{1}^{\prime}\right]^{1}{ }_{1}\right] \tag{48}\\
& =\frac{1}{2}\left[\left(\operatorname{Im}\left(\left[\Omega_{1}^{\prime}\right]^{1}{ }_{2}\left[\Omega_{2}^{\prime}\right]_{1}^{2}\right)-\operatorname{Im}\left(\left[\Omega_{2}^{\prime}\right]_{2}^{1}\left[\Omega_{1}^{\prime}\right]^{2}{ }_{1}\right)\right)\right. \\
& \times\left[\Omega_{3}^{\prime}\right]^{1}{ }_{1} \\
& +\left(\operatorname{Im}\left(\left[\Omega_{3}^{\prime}\right]^{1}{ }_{2}\left[\Omega_{1}^{\prime}\right]^{2}{ }_{1}\right)-\operatorname{Im}\left(\left[\Omega_{1}^{\prime}\right]_{2}^{1}\left[\Omega_{3}^{\prime}\right]^{2}{ }_{1}\right)\right) \\
& \times\left[\Omega_{2}^{\prime}\right]_{1}^{1} \\
& +\left(\operatorname{Im}\left(\left[\Omega_{2}^{\prime}\right]^{1}{ }_{2}\left[\Omega_{3}^{\prime}\right]^{2}{ }_{1}\right)-\operatorname{Im}\left(\left[\Omega_{3}^{\prime}\right]_{2}^{1}\left[\Omega_{2}^{\prime}\right]_{1}^{2}\right)\right) \\
& \left.\times\left[\Omega_{1}^{\prime}\right]^{1}{ }_{1}\right]
\end{align*}
$$

The values of $\left[\Omega_{i}^{\prime}\right]^{1}{ }_{2},\left[\Omega_{j}^{\prime}\right]^{2}{ }_{1}$, and $\left[\Omega_{k}^{\prime}\right]^{1}{ }_{1}$, for $i, j, k=$
$1,2,3$, are given below

$$
\begin{align*}
{\left[\Omega_{1}^{\prime}\right]_{2}^{1} } & =\left[U \sigma_{1} U^{\dagger}\right]^{1}{ }_{2} \\
& =(U)^{1}{ }_{1}\left(\sigma_{1}\right)_{2}^{1}\left(U^{\dagger}\right)^{2}{ }_{2}+(U)^{1}{ }_{2}\left(\sigma_{1}\right)^{2}{ }_{1}\left(U^{\dagger}\right)^{1}{ }_{2} \\
& =\cos \theta e^{i \zeta} \cos \theta e^{i \zeta}-\sin \theta e^{i \eta} \sin \theta e^{i \eta} \\
& =\cos ^{2} \theta e^{2 i \zeta}-\sin ^{2} \theta e^{2 i \eta} \tag{49}
\end{align*}
$$

$$
\begin{align*}
{\left[\Omega_{1}^{\prime}\right]^{2}{ }_{1} } & =\left[U \sigma_{1} U^{\dagger}\right]^{2}{ }_{1} \\
& =(U)^{2}{ }_{1}\left(\sigma_{1}\right)_{2}^{1}\left(U^{\dagger}\right)^{2}{ }_{1}+(U)^{2}{ }_{2}\left(\sigma_{1}\right)^{2}{ }_{1}\left(U^{\dagger}\right)^{1}{ }_{1} \\
& =\sin \theta e^{-i \eta}\left(-\sin \theta e^{-i \eta}\right)+\cos \theta e^{-i \zeta} \cos \theta e^{-i \zeta} \\
& =-\sin ^{2} \theta e^{-2 i \eta}+\cos ^{2} \theta e^{-2 i \zeta} \tag{50}
\end{align*}
$$

$$
\begin{align*}
{\left[\Omega_{1}^{\prime}\right]^{1}{ }_{1} } & =\left[U \sigma_{1} U^{\dagger}\right]^{1}{ }_{1} \\
& =(U)^{1}{ }_{2}\left(\sigma_{1}\right)^{2}{ }_{1}\left(U^{\dagger}\right)^{1}{ }_{1}+(U)^{1}{ }_{1}\left(\sigma_{1}\right)^{1}{ }_{2}\left(U^{\dagger}\right)^{2}{ }_{1} \\
& =-\sin \theta e^{i \eta} \cos \theta e^{-i \zeta}-\cos \theta e^{i \zeta} \sin \theta e^{-i \eta} \\
& =-\cos \theta \sin \theta\left(e^{-i(\zeta-\eta)}+e^{i(\zeta-\eta)}\right) \\
& =-2 \cos \theta \sin \theta \cos (\zeta-\eta) \tag{51}
\end{align*}
$$

$$
\begin{align*}
{\left[\Omega_{2}^{\prime}\right]_{2}^{1} } & =\left[U \sigma_{2} U^{\dagger}\right]^{1}{ }_{2} \\
& =(U)^{1}{ }_{2}\left(\sigma_{2}\right)^{2}{ }_{1}\left(U^{\dagger}\right)^{1}{ }_{2}+(U)^{1}{ }_{1}\left(\sigma_{2}\right)^{1}{ }_{2}\left(U^{\dagger}\right)^{2}{ }_{2} \\
& =-\sin \theta e^{i \eta}(i) \sin \theta e^{i \eta}+\cos \theta e^{i \zeta}(-i) \cos \theta e^{i \zeta} \\
& =-i\left(\sin ^{2} \theta e^{2 i \eta}+\cos ^{2} \theta e^{2 i \zeta}\right) \tag{52}
\end{align*}
$$

$$
\begin{align*}
{\left[\Omega_{2}^{\prime}\right]^{2}=} & {\left[U \sigma_{2} U^{\dagger}\right]^{2}{ }_{1} } \\
= & (U)^{2}{ }_{1}\left(\sigma_{2}\right)^{1}{ }_{2}\left(U^{\dagger}\right)^{2}{ }_{1}+(U)^{2}{ }_{2}\left(\sigma_{2}\right)^{2}{ }_{1}\left(U^{\dagger}\right)^{1}{ }_{1} \\
= & \sin \theta e^{-i \eta}(-i)-\sin \theta e^{-i \eta} \\
& +\cos \theta e^{-i \zeta}(i) \cos \theta e^{-i \zeta} \\
= & i\left(\sin ^{2} \theta e^{-2 i \eta}+\cos ^{2} \theta e^{-2 i \zeta}\right) \tag{53}
\end{align*}
$$

$$
\begin{align*}
{\left[\Omega_{2}^{\prime}\right]_{1}^{1}=} & {\left[U \sigma_{2} U^{\dagger}\right]^{1}{ }_{1} } \\
= & (U)^{1}{ }_{1}\left(\sigma_{2}\right)^{1}{ }_{2}\left(U^{\dagger}\right)^{2}{ }_{1}+(U)^{1}{ }_{2}\left(\sigma_{2}\right)^{2}{ }_{1}\left(U^{\dagger}\right)^{1}{ }_{1} \\
= & \cos \theta e^{i \zeta}(-i)\left(-\sin \theta e^{i \eta}\right) \\
& -\sin \theta e^{i \eta}(i) \cos \theta e^{-i \zeta} \\
= & i \cos \theta \sin \theta\left(e^{i(\zeta-\eta)}-e^{-i(\zeta-\eta)}\right) \\
= & i \cos \theta \sin \theta(2 i \sin (\zeta-\eta)) \\
= & -2 \cos \theta \sin \theta \sin (\zeta-\eta) \tag{54}
\end{align*}
$$

$$
\begin{align*}
{\left[\Omega_{3}^{\prime}\right]^{1}{ }_{2} } & =\left[U \sigma_{3} U^{\dagger}\right]^{1}{ }_{2} \\
& =(U)^{1}{ }_{1}\left(\sigma_{3}\right)^{1}{ }_{1}\left(U^{\dagger}\right)^{1}{ }_{2}+\left(U^{1}\right)_{2}\left(\sigma_{3}\right)^{2}{ }_{2}\left(U^{\dagger}\right)^{2}{ }_{2} \\
& =\cos \theta e^{i \zeta} \sin \theta e^{i \eta}+\cos \theta e^{i \zeta} \sin \theta e^{i \eta} \\
& =2 \cos \theta \sin \theta e^{i(\zeta+\eta)} \tag{55}
\end{align*}
$$

$$
\begin{align*}
{\left[\Omega_{3}^{\prime}\right]^{2}{ }_{1} } & =\left[U \sigma_{3} U^{\dagger}\right]^{2}{ }_{1} \\
& =(U)^{2}{ }_{1}\left(\sigma_{3}\right)^{1}{ }_{1}\left(U^{\dagger}\right)^{1}{ }_{1}+(U)^{2}{ }_{2}\left(\sigma_{3}\right)^{2}{ }_{2}\left(U^{\dagger}\right)^{2}{ }_{1} \\
& =\sin \theta e^{-i \eta} \cos \theta e^{-i \zeta}+\cos \theta e^{-i \zeta} \sin \theta e^{-i \eta} \\
& =2 \cos \theta \sin \theta e^{-i(\zeta+\eta)} \tag{56}
\end{align*}
$$

$$
\begin{align*}
{\left[\Omega_{3}^{\prime}\right]^{1}{ }_{1} } & =\left[U \sigma_{3} U^{\dagger}\right]^{1}{ }_{1} \\
& =(U)^{1}{ }_{1}\left(\sigma_{3}\right)^{1}{ }_{1}\left(U^{\dagger}\right)^{1}{ }_{1}+(U)^{1}{ }_{2}\left(\sigma_{3}\right)^{2}{ }_{2}\left(U^{\dagger}\right)^{2}{ }_{1} \\
& =\cos \theta e^{i \zeta} \cos \theta e^{-i \zeta}+\left(-\sin \theta e^{i \eta}\right)(-1)\left(-\sin \theta e^{-i \eta}\right) \\
& =\cos ^{2} \theta-\sin ^{2} \theta \tag{57}
\end{align*}
$$

Now, we can compute the values of $\operatorname{Im}\left(\left[\Omega_{i}^{\prime}\right]^{1}\left[\Omega_{j}^{\prime}\right]^{2}{ }_{1}\right.$, for all $i, j=1,2,3$, as follows

$$
\begin{align*}
\operatorname{Im}\left(\left[\Omega_{1}^{\prime}\right]_{2}^{1}\left[\Omega_{2}^{\prime}\right]_{1}^{2}\right)= & \operatorname{Im}\left(\left(\cos ^{2} \theta e^{2 i \zeta}-\sin ^{2} \theta e^{2 i \eta}\right)\right. \\
& \left.\times\left(i \cos ^{2} \theta e^{-2 i \zeta}+i \sin ^{2} \theta e^{-2 i \eta}\right)\right) \\
= & \operatorname{Im}\left(i \left(\cos ^{4} \theta-\sin ^{4} \theta\right.\right. \\
& +\cos ^{2} \theta \sin ^{2} \theta e^{2 i(\zeta-\eta)} \\
& \left.\left.-\cos ^{2} \theta \sin ^{2} \theta e^{-2 i(\zeta-\eta)}\right)\right) \\
= & \operatorname{Im}\left(i \left(\cos ^{4} \theta-\sin ^{4} \theta\right.\right. \\
& +\cos ^{2} \theta \sin ^{2} \theta(\cos 2(\zeta-\eta) \\
& +i \sin 2(\zeta-\eta)))) \\
& -\cos ^{2} \theta \sin ^{2} \theta(\cos 2(\zeta-\eta) \\
& \left.\left.\left.-i \sin ^{2}(\zeta-\eta)\right)\right)\right) \\
= & \cos ^{4} \theta-\sin ^{4} \theta \tag{58}
\end{align*}
$$

$$
\begin{align*}
\operatorname{Im}\left(\left[\Omega_{2}^{\prime}\right]_{2}^{1}\left[\Omega_{1}^{\prime}\right]_{1}^{2}\right)= & \operatorname{Im}\left(\left(-i \sin ^{2} \theta e^{2 i \eta}-i \cos ^{2} \theta e^{2 i \zeta}\right)\right. \\
& \left.\times\left(-\sin ^{2} \theta e^{-2 i \eta}+\cos ^{2} \theta e^{-2 i \zeta}\right)\right) \\
= & \operatorname{Im}\left(i \left(\sin ^{4} \theta-\cos ^{4} \theta\right.\right. \\
& +\cos ^{2} \theta \sin ^{2} \theta e^{2 i(\zeta-\eta)} \\
& \left.\left.-\cos ^{2} \theta \sin ^{2} \theta e^{-2 i(\zeta-\eta)}\right)\right) \\
= & \operatorname{Im}\left(i \left(\sin ^{4} \theta-\cos ^{4} \theta\right.\right. \\
& +\cos ^{2} \theta \sin ^{2} \theta(\cos 2(\zeta-\eta) \\
& +i \sin 2(\zeta-\eta)) \\
& -\cos ^{2} \theta \sin ^{2} \theta(\cos 2(\zeta-\eta) \\
& -i \sin ^{2(\zeta-\eta))))} \\
= & \operatorname{Im}\left(i \left(\sin ^{4} \theta-\cos ^{4} \theta\right.\right. \\
& \left.\left.+2 i \cos ^{2} \theta \sin ^{2} \theta \sin 2(\zeta-\eta)\right)\right) \\
= & \sin ^{4} \theta-\cos ^{4} \theta \tag{59}
\end{align*}
$$

$$
\begin{align*}
\operatorname{Im}\left(\left[\Omega_{3}^{\prime}\right]_{2}^{1}\left[\Omega_{1}^{\prime}\right]_{1}^{2}\right)= & \operatorname{Im}\left(\left(2 \cos \theta e^{i \zeta} \sin \theta e^{i \eta}\right)\right. \\
& \left.\times\left(-\sin ^{2} \theta e^{-2 i \eta}+\cos ^{2} \theta e^{-2 i \zeta}\right)\right) \\
= & 2 \operatorname{Im}\left(\cos ^{3} \theta \sin \theta e^{-i(\zeta-\eta)}\right. \\
& \left.-\sin ^{3} \theta \cos \theta e^{i(\zeta-\eta)}\right) \\
= & 2 \operatorname{Im}\left(\cos ^{3} \theta \sin \theta(\cos (\zeta-\eta)\right. \\
& -i \sin (\zeta-\eta)) \\
& -\sin ^{3} \theta \cos \theta(\cos (\zeta-\eta) \\
& +i \sin (\zeta-\eta))) \\
= & -2\left(\cos ^{3} \theta \sin \theta+\sin ^{3} \theta \cos \theta\right) \\
& \times \sin (\zeta-\eta) \tag{60}
\end{align*}
$$

$$
\begin{aligned}
\operatorname{Im}\left(\left[\Omega_{1}^{\prime}\right]_{2}^{1}\left[\Omega_{3}^{\prime}\right]_{1}^{2}\right)= & \operatorname{Im}\left(\left(\cos ^{2} \theta e^{2 i \zeta}-\sin ^{2} \theta e^{2 i \eta}\right)\right. \\
& \left.\times\left(2 \cos \theta e^{-i \zeta} \sin \theta e^{-i \eta}\right)\right) \\
= & 2 \operatorname{Im}\left(\cos ^{3} \theta \sin \theta e^{i(\zeta-\eta)}\right. \\
& \left.-\sin ^{3} \theta \cos \theta e^{-i(\zeta-\eta)}\right) \\
= & 2 \operatorname{Im}\left(\cos ^{3} \theta \sin \theta(\cos (\zeta-\eta)\right. \\
& +i \sin (\zeta-\eta)) \\
& -\sin ^{3} \theta \cos \theta(\cos (\zeta-\eta) \\
& -i \sin (\zeta-\eta))) \\
= & \left(\cos ^{3} \theta \sin \theta+\sin ^{3} \theta \cos \theta\right) \\
& \times \sin (\zeta-\eta)
\end{aligned}
$$

$$
\begin{align*}
\operatorname{Im}\left(\left[\Omega_{2}^{\prime}\right]_{2}^{1}\left[\Omega_{3}^{\prime}\right]^{2}{ }_{1}\right)= & \operatorname{Im}\left(\left(-i \sin ^{2} \theta e^{2 i \eta}-i \cos ^{2} \theta e^{2 i \zeta}\right)\right. \\
& \left.\times\left(2 \cos \theta e^{-i \zeta} \sin \theta e^{-i \eta}\right)\right) \\
= & -2 \operatorname{Im}\left(i \left(\sin ^{3} \theta \cos \theta e^{-i(\zeta-\eta)}\right.\right. \\
& \left.\left.+\cos ^{3} \theta \sin \theta e^{i(\zeta-\eta)}\right)\right) \\
= & -2 \operatorname{Im}\left(i \left(\sin ^{3} \theta \cos \theta(\cos (\zeta-\eta)\right.\right. \\
& -i \sin (\zeta-\eta)) \\
& +\cos ^{3} \theta \sin \theta(\cos (\zeta-\eta) \\
& +i \sin (\zeta-\eta)))) \\
= & -2\left(\sin ^{3} \theta \cos \theta+\cos ^{3} \theta \sin \theta\right) \\
& \times \cos (\zeta-\eta) \tag{62}
\end{align*}
$$

$$
\begin{align*}
\operatorname{Im}\left(\left[\Omega_{3}^{\prime}\right]_{2}^{1}\left[\Omega_{2}^{\prime}\right]_{1}^{2}\right)= & \operatorname{Im}\left(\left(2 \cos \theta e^{i \zeta} \sin \theta e^{i \eta}\right)\right. \\
& \left.\times\left(i \sin ^{2} \theta e^{-2 i \eta}+i \cos ^{2} \theta e^{-2 i \zeta}\right)\right) \\
= & 2 \operatorname{Im}\left(i \left(\sin ^{3} \theta \cos \theta e^{i(\zeta-\eta)}\right.\right. \\
& \left.\left.+\cos ^{3} \theta \sin \theta e^{-i(\zeta-\eta)}\right)\right) \\
= & 2 \operatorname{Im}\left(i \left(\sin ^{3} \theta \cos \theta(\cos (\zeta-\eta)\right.\right. \\
& +i \sin (\zeta-\eta))) \\
& +\cos ^{3} \theta \sin \theta(\cos (\zeta-\eta) \\
& -i \sin (\zeta-\eta)) \\
= & 2\left(\sin ^{3} \theta \cos \theta+\cos ^{3} \theta \sin \theta\right) \\
& \times \cos (\zeta-\eta) \tag{63}
\end{align*}
$$

Finally, eq.(47) become

$$
\begin{align*}
\operatorname{det}(\varphi(U))= & \frac{1}{2}\left[\left(\left(\cos ^{4} \theta-\sin ^{4} \theta\right)\right.\right. \\
& \left.-\left(-\cos ^{4} \theta-\sin ^{4} \theta\right)\right)\left(\cos ^{2} \theta-\sin ^{2} \theta\right) \\
& +\left(-2\left(\sin ^{3} \theta \cos \theta+\cos ^{3} \theta \sin \theta\right)\right. \\
& \times \cos (\zeta-\eta)) \\
& -2\left(\sin ^{3} \theta \cos \theta+\cos ^{3} \theta \sin \theta\right) \tag{64}
\end{align*}
$$

$$
\begin{align*}
& \times \cos (\zeta-\eta)(-2 \cos \theta \sin \theta \cos (\zeta-\eta)) \\
& +\left(\left(-2\left(\sin ^{3} \theta \cos \theta+\cos ^{3} \theta \sin \theta\right)\right.\right. \\
& \sin (\zeta-\eta)) \\
& -2\left(\sin ^{3} \theta \cos \theta\right. \\
& \left.\left.+\cos ^{3} \theta \sin \theta\right) \sin (\zeta-\eta)\right) \\
& \times(-2 \cos \theta \sin \theta \sin (\zeta-\eta))] \\
& +8(\sin \theta \cos \theta)\left(\sin ^{2} \theta+\cos ^{2} \theta\right) \\
& \times(\cos \theta \sin \theta)] \tag{65}\\
= & \frac{1}{2}\left[2\left(\cos ^{2} \theta-\sin ^{2} \theta\right)^{2}+8 \sin ^{2} \cos ^{2} \theta\right] \\
= & \frac{1}{2}\left[2 \cos ^{4} \theta-4 \cos ^{2} \theta \sin ^{2} \theta+2 \sin ^{4} \theta\right. \\
& \left.+8 \sin ^{2} \theta \cos ^{2} \theta\right] \\
= & \frac{1}{2}\left[2 \cos ^{4} \theta+4 \cos ^{2} \theta \sin ^{2} \theta+2 \sin ^{4} \theta\right] \\
= & \frac{1}{2}\left[2\left(\cos ^{2} \theta+\sin ^{2} \theta\right)^{2}\right]=\frac{1}{2} \cdot 2=1 .
\end{align*}
$$

Of course we have

$$
\begin{aligned}
{\left[\varphi\left(\mathbb{I}_{2}\right)\right]_{j}^{i} } & =\frac{1}{2} \operatorname{tr}\left(\sigma_{i} \mathbb{I}_{2} \sigma_{j} \mathbb{I}_{2}^{\dagger}\right)=\frac{1}{2} \operatorname{tr}\left(\sigma_{i} \sigma_{j}\right) \\
& =\frac{1}{2} \operatorname{tr}\left(i \epsilon_{i j k} \sigma_{k}+\delta_{i j} \mathbb{I}_{2}\right) \\
& =\frac{1}{2}\left(i \epsilon_{i j k} \operatorname{tr}\left(\sigma_{k}\right)+\delta_{i j} \operatorname{tr}\left(\mathbb{I}_{2}\right)\right. \\
& =\frac{1}{2}\left(0+2 \delta_{i j}\right)=\delta_{i j},
\end{aligned}
$$

so we can conclude that $\varphi\left(\mathbb{I}_{2}\right)=\mathbb{I}_{3}$.
These result shows us $\varphi(U)$ is in $S O(3)$ for every U in $S U(2)$. Finnaly by using the result obtained in eq.(34), we concluded that map φ defined in eq.(23) is a homomorphism of $S U(2)$ to $S O(3)$. So, instead of considering the topological properties as in [5], we have proved by purely algebraically that the maps defined in eq.(23) will maps any elements of $S U(2)$ into $S O(3)$. Moreover, according to definition (23), it follows that

$$
\begin{align*}
{[\varphi(-U)]_{j}^{i} } & \equiv \frac{1}{2} \operatorname{tr}\left(\sigma_{i}(-U) \sigma_{j}(-U)^{\dagger}\right) \\
& =[\varphi(U)]_{j}^{i} \equiv \frac{1}{2} \operatorname{tr}\left(\sigma_{i} U \sigma_{j} U^{\dagger}\right) \tag{66}\\
& =[\varphi(U)]_{j}^{i},
\end{align*}
$$

so we obtain that $\varphi(-U)=\varphi(U), \forall U \in S U(2)$.

5. Conclusions

The complete purely algebraic proof of homomorphism between two rotation groups,
$S U(2)$ and $S O(3)$, was given by introducing a map $\varphi: S U(2) \rightarrow S O(3)$ defined as $[\varphi(U)]^{i}{ }_{j} \equiv \frac{1}{2} \operatorname{tr}\left(\sigma_{i} U \sigma_{j} U^{\dagger}\right)$. The proof was obtained succesfully by doing algebraic calculation, without concerning the topology of both groups.

Acknowledgments

Authors thank to Universitas Islam Negeri Walisongo Semarang and to all parties who helped.

References

[1] M Andrews and J Gunson. "Complex angular momenta and many-particle states. I. properties of local representations of the rotation group". en. In: J. Math. Phys. 5.10 (1964), pp. 13911400.
[2] V Bargmann. "On the representations of the rotation group". en. In: Rev. Mod. Phys. 34.4 (1962), pp. 829-845.
[3] Johan G Belinfante and Bernard Kolman. A survey of lie groups and lie algebras with applications and computational methods. Society for Industrial and Applied Mathematics, 1989.
[4] Moshe Carmeli. "Representations of the threedimensional rotation group in terms of direction and angle of rotation". en. In: J. Math. Phys. 9.11 (1968), pp. 1987-1992.
[5] John F Cornwell. Group Theory in Physics: Volume 1: An Introduction. en. San Diego, CA: Academic Press, 1997.
[6] Veliko Donchev, Clementina Mladenova, and Ivailo Mladenov. "On Vector-Parameter Form of the $\mathrm{SU}(2) \rightarrow \mathrm{SO}(3, \mathrm{R})$ Map". In: Ann. Sofia Univ., Fac. Math and Inf. 102 (Sept. 2015), pp. 91-107.
[7] Robert Gilmore. Lie groups, lie algebras \mathcal{E} some of their applications. Mineola, NY: Dover Publications, 2012.
[8] Erik W Grafarend and Wolfgang Kühnel. "A minimal atlas for the rotation group $\mathrm{SO}(3)$ ". en. In: GEM Int. J. Geomath. 2.1 (2011), pp. 113122.
[9] Brian C Hall. Lie groups, lie algebras, and representations: An elementary introduction. en. 2nd ed. Cham, Switzerland: Springer International Publishing, 2016.
[10] Francis Halzen and Alan D Martin. Quarks and leptons: Introductory course in modern particle physics. Brisbane, QLD, Australia: John Wiley and Sons (WIE), 1984.
[11] J Dwayne Hamilton. "The rotation and precession of relativistic reference frames". en. In: Can. J. Phys. 59.2 (1981), pp. 213-224.
[12] Francesco Iachello. Lie Algebras and Applications. en. Berlin, Germany: Springer, 2015.
[13] James D Louck. "From the rotation group to the Poincaré group". In: Symmetries in Science VI. Boston, MA: Springer US, 1993, pp. 455-468.
[14] Franklin Lowenthal. "Uniform finite generation of the rotation group". In: Rocky Mountain J. Math. 1.4 (1971), pp. 575-586.
[15] Chi-Sing Man. "Irreducible Representations of $\mathrm{SU}(2), \mathrm{SO}(3)$, and $\mathrm{O}(3)$ ". In: Crystallographic Texture and Group Representations. Dordrecht: Springer Netherlands, 2023, pp. 313-328.
[16] H Maschke. "The representation of finite groups, especially of the rotation groups of the regular bodies of three-and four-dimensional space, by cayley's color diagrams". In: Amer. J. Math. 18.2 (1896), p. 156.
[17] Clair E Miller. "The topology of rotation groups". In: Ann. Math. 57.1 (1953), p. 90.
[18] C F Moppert. "The group of rotations of the sphere: Generators and relations". en. In: Geom. Dedicata 18.1 (1985).
[19] F.D. Murnaghan. Lectures on Applied Mathematics: The unitary and rotation groups. Lectures on Applied Mathematics. Spartan Books, 1962. URL: https://books. google.co.id/ books?id=05ezAAAAIAAJ.
[20] Alyssa Novelia and Oliver M O'Reilly. "On geodesics of the rotation group $\mathrm{SO}(3)^{\prime}$ ". en. In: Regul. Chaotic Dyn. 20.6 (2015), pp. 729-738.
[21] R Raimondi et al. "Spin-orbit interaction in a two-dimensional electron gas: A SU(2) formulation". en. In: Ann. Phys. 524.3-4 (2012).
[22] Miles Reid and Balazs Szendroi. "Quaternions, rotations and the geometry of transformation groups". In: Geometry and Topology. Cambridge: Cambridge University Press, 2005, pp. 142-163.
[23] D H Sattinger and O L Weaver. Lie groups and algebras with applications to physics, geometry, and mechanics. en. 1986th ed. New York, NY: Springer, 2013.
[24] Wu-Ki Tung. Group Theory in Physics. World Scientific Publishing, 1985.
[25] Brian G Wybourne. Classical Groups for Physicists. en. Nashville, TN: John Wiley \& Sons, 1974.

