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ABSTRACT 
This research focuses on predicting the value of oil and gas exports in Indonesia, employing a hybrid 
methodology that combines autoregressive models and a bootstrap approach. Specifically, this research 
applies the bootstrap-after-bootstrap approach to showcase its effectiveness in improving the accuracy 
of parameter estimates. Analysis results indicate that the autoregressive model with an order of p=2 
minimizes the AIC, BIC, and HQ values, yielding AIC=9.833775, BIC=10.03125, and HQ=9.883440, 
respectively. Consequently, the AR(2) model emerges as the optimal choice for predicting Indonesia's 
export value of oil and gas. This research utilizes varying numbers of bootstrap replications (B=100, 250, 
500, 1000, and 10000) to assess the impact on prediction intervals. Prediction intervals exhibit less 
smoothness for B=100 and B=250, whereas B=500 and B=1000 result in a considerably smoother 
pattern. The highest level of smoothness is achieved for B=10000. The findings underscore that 
bootstrap-after-bootstrap prediction intervals provide the most accurate and conservative assessment 
of future uncertainty. Moreover, predictive analysis for the upcoming five periods indicates a projected 
decline in the export value of oil and gas in Indonesia. Overall, this research demonstrates the efficacy of 
the bootstrap-after-bootstrap approach in enhancing the precision of predictions and providing robust 
insights into future uncertainties surrounding Indonesia's oil and gas export market. 
Keywords: autoregressive; bootstrap; forecasting; oil and gas 

 

Introduction 
 

The Indonesian economy, characterized by its reliance on the export of oil and gas, 
presents a unique set of challenges for time series analysis. The volatility of the Indonesian value 
of export in the oil and gas sector is intricately linked to various dynamic factors, demanding 
sophisticated modeling approaches to capture the complexity of these influences. 

Global oil prices exhibit considerable volatility due to factors such as geopolitical tensions 
(Alqahtani & Klein, 2021; Cunado et al., 2020), supply-demand imbalances (Chai et al., 2021), and 
changes in production levels by major oil-producing nations (Demirbas et al., 2017; Su et al., 
2020). For instance, a sudden geopolitical conflict in a major oil-producing region, like the Middle 
East, can lead to a spike in global oil prices (El-Gamal & Jaffe, 2018; Noguera-Santaella, 2016). 
This, in turn, directly impacts the export value of Indonesian oil and gas products, as the country 
is a significant player in the global energy market. Consider the period between 2014 and 2016 
when global oil prices experienced a significant downturn (Razmi et al., 2016). During this time, 
geopolitical tensions in the Middle East, coupled with a surge in global oil production, led to a 
substantial drop in oil prices. Indonesia, as a major oil exporter, faced the dual challenge of 
reduced export volumes and diminished export values due to the global price slump.  

The significance of predictive analysis on the value of oil and gas exports in Indonesia lies 
in its pivotal role for strategic decision-making and economic planning. Given Indonesia's 
substantial reliance on the oil and gas sector, accurate predictive models offer crucial insights for 
the government, businesses, and investors. However, in response to uncertainties influences in 
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predictive analysis, employing advanced approach like bootstrap-after-bootstrap becomes 
essential. This approach, by accounting for serial dependencies and providing robust parameter 
estimates, offers a more accurate representation of the intricate relationships within the time 
series data (Errouissi et al., 2015; Kim, 2001; Kim & Shamsuddin, 2020), allowing for a nuanced 
understanding of the Indonesian oil and gas export sector's dynamics. 

Traditional methodologies often encounter challenges, particularly in the context of 
emerging economies like Indonesia, where non-Gaussian distribution and limited sample sizes 
prevail (Errouissi et al., 2015; Hyndman & Athanasopoulos, 2018; Kim, 2001; Staszewska-
Bystrova et al., 2011). This research uses a hybrid method, in which combined autoregressive 
models and bootstrap-after-bootstrap approach. Motivated by the limitations of conventional 
techniques, the bootstrap-after-bootstrap approach is a robust solution for the estimation of 
autoregressive models in the context of the Indonesian oil and gas export sector. This approach 
aims to address the intricacies of serial correlation in time series data, providing more accurate 
and reliable parameter estimates (Bozorg et al., 2021; Clements & Kim, 2007; Kim, 2001).  
The primary objective of this research is to predict the value of export oil and gas in Indonesia, in 
which focuses on the prediction intervals. Through the application of bootstrap-after-bootstrap 
approach, this research aims to illustrate how this approach enhances the accuracy of parameter 
estimates and provides robust insights into the serial dependencies within the data (Kim, 2001; 
Mahmudah, 2023).  A case study delves into the dynamic nature of Indonesia's oil and gas export 
values, considering factors such as global market trends, geopolitical influences, and domestic 
policy changes.  

The conventional (nonparametric) bootstrap method utilized in previous research 
produces bootstrap replicates that are inherently biased in small samples, owing to biases 
inherent in AR parameter estimators (Friedrich et al., 2020; Kilian, 1998; Kim, 2001). A study 
demonstrated that intervals derived through the bootstrap-after-bootstrap approach exhibit 
significantly superior performance compared to those relying on conventional methods, 
especially in small sample sizes (Kilian, 1998). Furthermore, a study reported that the bootstrap-
after-bootstrap method emerges as a superior alternative to asymptotic and standard bootstrap 
prediction intervals. Bootstrap-after-bootstrap prediction intervals consistently offer the most 
precise and cautious evaluation of future uncertainty, particularly in situations with small sample 
sizes, across a wide range of circumstances, including AR models with roots near or equal to unity 
(Kim, 2001; Shang, 2018).  

The key novelty is the development and application of the bootstrap-after-bootstrap 
technique to autoregressive models. Unlike traditional bootstrap, it iteratively resamples within 
each bootstrap iteration, improving precision in parameter estimates and prediction intervals. 
Applied to Indonesian oil and gas exports, this approach captures intricate patterns, offering a 
more accurate and stable model for economic trend forecasting. This research not only 
contributes to methodological advancements in time series analysis but also provides a practical 
and valuable tool for researchers and policymakers navigating the complexities of the Indonesian 
oil and gas export sector. The real-world application serves as a concrete example of the 
methodology's effectiveness in addressing the specific challenges posed by economic time series 
data in a dynamic and critical sector. 
 

Methods  
 
Autoregressive model 

The traditional of an autoregressive (AR) model is a type of model in time series analysis 
where the values of a variable at a particular time are determined by the values of the variable at 
previous times. In the case of a K-dimensional stationary AR(p) model, represented as follows 
(Kim, 2001): 

𝑌𝑡 = 𝑣 + 𝐴1𝑌𝑡−1 + ⋯ + 𝐴𝑝𝑌𝑡−𝑝 + 𝑢𝑡 (1) 

Where 𝑌𝑡 is the observed variable at time t; 𝑣 is a constant; 𝐴1, 𝐴2, … 𝐴𝑝 are autoregressive 

coefficient parameters; 𝑌𝑡−1, 𝑌𝑡−2, … , 𝑌𝑡−𝑝are the values of the variable at previous times up to p 
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time steps;  𝑢𝑡 is the random disturbance at time t, assumed to have a normal distribution with 
mean 0 and variance σ2.  

An AR(p) model like this is used to model the relationship between the variable Y at time 
t and its past values up to p time steps. The autoregressive coefficients 𝐴1, 𝐴2, … 𝐴𝑝  determine the 

extent to which previous values influence the current value of the variable. 
Stationarity means that the statistical properties of the model do not change over time. This 
implies that the mean, variance, and covariance of the variable do not depend on time. It is an 
essential assumption in time series analysis because it allows for consistent estimation of model 
parameters. Therefore, the AR(p) model enables us to understand and model temporal 
dependence patterns in time series data. 

The backward AR(p) model linked to the forward model (1) can be expressed as 

𝑌𝑡 = 𝜇 + 𝐻1𝑌𝑡+1 + ⋯ + 𝐻𝑝𝑌𝑡−𝑝 + 𝑣𝑡 (2) 

Where 𝑡 = 0,1,2, … 𝐸(𝑣𝑡) = 0 and 𝐸(𝑣𝑡𝑣𝑡
′) = ∑𝑣  is symmetric positive definite matrix with 

finite elements. 
 

Bootstrap-after-bootstrap Prediction Intervals 

The backward model is employed in bootstrapping to generate bootstrap forecasts based 

on the most recent p observations of the original series. Suppose �̂� = (�̂�, �̂�1, … , �̂�𝑝) and �̂� =

(�̂�, �̂�1, … , �̂�𝑝) are the least square estimator for A and H. Then, predictions are produced in a 

conventional manner by utilizing the estimated coefficients (Kim, 2001): 

�̂�𝑛(ℎ) = �̂� + �̂�1�̂�𝑛−1(ℎ) + ⋯ + �̂�𝑝�̂�𝑛−𝑝(ℎ) (3) 

Where �̂�𝑛(𝑗) = 𝑌𝑛+𝑗  for 𝑗 ≤ 0. The asymptotic prediction interval (API) for the kth AR component, 

maintaining a nominal coverage rate of 100(1 − 𝛼
𝐾⁄ )%, can be characterized as: 

𝐴𝑃𝐼𝑘 = �̂�𝑘,𝑛(ℎ) 𝑧𝜏�̂�𝑘(ℎ) (4) 

Where 𝑘 = 1,2, … , 𝐾. �̂�𝑘,𝑛(ℎ) represents the k-th element of �̂�𝑛(ℎ), and 𝑧𝜏 is the upper percentile 

corresponding to the 100 𝜏th percentile of the standard normal distribution with 𝜏 = .5(𝛼
𝐾⁄ ). 

Additionally, �̂�𝑘(ℎ) is the square root of the k-th diagonal element of ∑ (ℎ)𝑌 . The procedure for 
obtaining bootstrap-after-bootstrap prediction intervals can be derived as follows (Kim, 2001): 

Step 1:  

Calculate �̂�, �̂�, and residuals  �̂�𝑡 and �̂�𝑡 using equation (1) when given n realizations (𝑌1, … , 𝑌𝑛). 

Step 2:  

Calculate the bootstrap estimator �̂�∗ and �̂�∗ for A and H. The calculations for the biases of �̂� and 

�̂� are determined through the estimation of 𝑏𝑖𝑎𝑠(�̂�) = �̂�∗ − �̂� and 𝑏𝑖𝑎𝑠(�̂�) = �̂�∗ − �̂� 

bias XY and bias ZY. The pseudo datasets are generated as 𝑌𝑡
∗ = �̂� + �̂�1𝑌𝑡−1

∗ + ⋯ + �̂�𝑝𝑌𝑡−𝑝
∗ + 𝑢𝑡

∗ 

where 𝑢𝑡
∗ is a random draw with replacement from �̂�𝑡 . Further, 𝑌𝑡

∗ = �̂� + �̂�1𝑌𝑡+1
∗ + ⋯ + �̂�𝑝𝑌𝑡+𝑝

∗ +

𝑣𝑡
∗ where 𝑣𝑡

∗ is a random draw with replacement from �̂�𝑡 . 

Step 3:  

Calculate the bias-corrected estimators �̂�𝑐 and �̂�𝑐 using 𝑏𝑖𝑎𝑠(�̂�) and 𝑏𝑖𝑎𝑠(�̂�). 

Step 4:  

Generate a pseudo dataset using equation (2) as 𝑌𝑡
∗ = �̂�𝑐 + �̂�1

𝑐𝑌𝑡+1
∗ + ⋯ + �̂�𝑝

𝑐𝑌𝑡+𝑝
∗ + 𝑣𝑡

∗. The initial 

p values are initialized to match the last p values of the original series.  

Step 5:  

Employing these pseudo datasets, the coefficient matrices of the forward model (1) are estimated 

using the Least Squares (LS) method, and the resulting estimators are denoted as �̃�∗. 

Step 6:  

Calculate the bias corrected estimator �̃�𝑐 using the biases in �̃�∗. 
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Then, the iterative generation of bootstrap replicates for AR forecasts is carried out as follows: 

 

𝑌𝑛
∗(ℎ) = �̃�𝑐 + �̃�1

𝑐𝑌𝑛
∗(ℎ − 1) + ⋯ + �̃�𝑝

𝑐 𝑌𝑛
∗(ℎ − 𝑝) + 𝑢𝑛+ℎ

∗  (5) 

Where 𝑌𝑛
∗(𝑗) = 𝑌𝑛+𝑗

∗ = 𝑌𝑛+𝑗  for 𝑗 ≤ 0 and 𝑢𝑛+ℎ
∗  is a random term draw from �̂�𝑡 with replacement. 

Generating pseudo datasets repeatedly as outlined in (5), B times, will result in the bootstrap 

forecast distribution 𝑌𝑛
∗(ℎ; 𝑖)𝑖=1

𝐵 . 

 
Data  

This research utilized secondary data in the form of the export values of oil and gas in 
Indonesia, which were published by Statistics Indonesia in the year 2023. The data covered the 
period from January 2022 to November 2023, totaling 23 series. Figure 1 illustrates the data 
series employed in the predictive analysis of the export values of oil and gas in Indonesia. 

 
Figure 1. Export values of oil and gas (in million US$) 

 

Figure 1 provides a chronological overview of the monthly variations in the export values 
of oil and gas, depicting fluctuations and trends over the specified period. The most significant 
increase in the time series data occurred from January to February 2022, with a notable rise of 
463.7. Conversely, the most substantial decrease, indicating a decline in the export value of oil 
and gas, was observed from July 2022 to August 2022, with a reduction of -403.9.  

The COVID-19 pandemic has brought about unprecedented uncertainty across all facets 
of life, extending its effects to the export values of oil and gas in Indonesia. Predicting these export 
values entails grappling with inherent uncertainty stemming from various factors. Fluctuations 
in global oil prices, heavily influenced by complex supply-demand dynamics, geopolitical 
tensions, and economic conditions, pose a significant challenge to accurate forecasting. Moreover, 
changes in government policies, such as taxation, production quotas, and environmental 
regulations, further contribute to the uncertainty surrounding future export values. Additionally, 
geopolitical events, such as conflicts in oil-producing regions or shifts in international trade 
agreements, introduce unpredictable elements into the equation. In the face of such uncertainty, 
traditional forecasting methods may fall short of capturing the full spectrum of potential 
outcomes. Here, the Bootstrap-after-bootstrap approach emerges as a valuable tool. By 
generating multiple bootstrap samples from historical export data, this approach enables the 
simulation of diverse scenarios and the assessment of prediction variability. Moreover, through 
the computation of prediction intervals or confidence intervals based on these samples, analysts 
can gain insights into the range of potential export values, thereby informing more robust 
decision-making processes amidst uncertain circumstances. 
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Model selection 
To utilize statistical criteria such as the Akaike Information Criterion (AIC), Bayesian 

Information Criterion (BIC), or Hannan-Quinn Information Criterion (HQ) in predicting the 
export values of oil and gas in Indonesia using an autoregressive (AR) model (AR(p)), several 
steps must be followed. Firstly, a range of AR models with varying orders p (representing the 
number of lagged terms) needs to be specified for consideration. Following model fitting, the AIC, 
BIC, and HQ criteria are computed for each model, reflecting the trade-off between goodness of 
fit and model complexity. Lower criterion values signify better model performance. Next, 
comparisons are made across all AR(p) models considered, with the model exhibiting the lowest 
values of each criterion being chosen as the optimal AR(p) model for predicting export values. 
Utilizing this selected model, predictions of future export values can be generated using 
techniques like one-step ahead or multi-step ahead forecasting. Subsequently, the predictive 
performance of the chosen AR(p) model is assessed through methods such as backtesting or 
cross-validation, ensuring the accuracy and reliability of predictions against observed export 
values. Lastly, refinement of the modeling process may be undertaken iteratively, considering 
alternative specifications or additional predictors to enhance predictive accuracy. By 
systematically applying these steps and leveraging statistical criteria like AIC, BIC, and HQ, 
analysts can effectively select the most appropriate AR(p) model for predicting export values of 
oil and gas in Indonesia, thereby improving the quality and reliability of forecasts. 
 
Results and Discussions  
 

To generate both point forecasts and prediction intervals, this research utilized bias-

correction techniques through the bootstrap-after-bootstrap technique within autoregressive 

time series models. The application of these techniques is essential as relying solely on point 

forecasts lacks comprehensive insight. The absence of prediction intervals makes it challenging 

to evaluate the precision and uncertainty associated with the estimates (De Livera et al., 2011; 

Hyndman & Athanasopoulos, 2018; Mahmudah et al., 2023). 

In prediction analysis using an autoregressive model, it is essential to ascertain the 

suitable AR order by employing statistical criteria like the Akaike Information Criterion (AIC), 

Bayesian Information Criterion (BIC), or Hannan-Quinn Information Criterion (HQ). These 

criteria aid in the identification of the optimal order (p) for the Autoregressive (AR) model. AIC is 

preferred because it focuses on predicting accuracy while penalizing complexity to a lesser 

extent. BIC imposes a more significant penalty based on sample size, making it excellent for 

selecting the correct model from a set, especially in large-sample cases. HQ, a compromise 

between AIC and BIC, serves as an alternative when neither AIC nor BIC produces satisfying 

results. AIC and BIC are the most often utilized of these; AIC is selected for optimizing predictive 

performance, whilst BIC is chosen to ensure the most parsimonious model, which is very 

important when dealing with large amounts of data. Models with the lowest AIC, BIC, or HQ values 

are deemed the most appropriate. Reduced values signify a superior balance between the quality 

of model fit and its complexity. The results of the analysis revealed that the order p=2 yielded the 

minimum AIC, BIC, and HQ values, with AIC=9.833775; BIC= 10.03125, and HQ=9.883440, 

respectively. Therefore, AR(2) is the best model to predict the Indonesian export value of oil and 

gas.  

Furthermore, understanding the stationarity of time series data is crucial in time series 

analysis, particularly when applying autoregressive models. Stationarity ensures that the 

statistical properties of the data, such as mean and variance, remain constant over time. In the 

context of forecasting and time series analysis, the Autocorrelation Function (ACF) and the Partial 

Autocorrelation Function (PACF) plots are the most essential tools to check the nature of the 

serial correlation. These graphs also determine the sort of time series model to apply based on 
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the observed correlation. ACF and PACF plots aid in assessing stationarity by revealing patterns 

of correlation and partial correlation between data points at different lags. Positive values show 

that data at the time are positively correlated to their previous values. This implies that if the time 

series is positive (or negative) in a specific time period, the corresponding lag time will also 

exhibit positive values (or negative values). Inversely, negative values mean that the current time 

results are anti-proportional or inversely related to their past values. This means that in an 

inverted yield curve, as long-term yields rise, short-term yields fall, or if short-term yields rise, 

long-term yields fall. In Figure 2, the ACF plot demonstrates the correlation between observations 

at different time lags, while the PACF plot focuses on the correlation between observations while 

controlling for the effects of previous lags.  

 

 
(a) 

 
(b) 

Figure 2. a) ACF plot; b) PACF Plot 

 

In the presented ACF plot above, the autocorrelation values remain within the dotted line 

region, indicating that the time series data maintains a stationary behavior. Sampling variability 

can cause autocorrelation estimates to deviate slightly. If the overall ACF plot shows a sharp 

decline after lag 1 and other autocorrelation values are within the confidence area, the data can 

still be considered stationary. This stationary nature is a favorable condition for autoregressive 

modeling, as it ensures that the statistical properties of the data remain constant over time, 

enhancing the reliability of predictions based on the autoregressive model. The results of 

prediction based on the traditional AR (2) model for the following five periods (months) are 

presented in the table 1. 

 

Table 1. Forecasting results using traditional autoregressive model 

Periods Point  forecast 5% 95% 

h1 1.34 1.11 1.69 
h2 1.34 1.11 1.69 
h3 1.34 1.11 1.69 

h4 1.34 1.11 1.69 

h5 1.34 1.11 1.69 

 

To acquire bias-corrected forecasts and bootstrap prediction interval estimates, this 

research employed varying numbers of bootstrap replications (B=100, 250, 500, 1000, and 

10,000). The selection of specific values for B involves a careful consideration of trade-offs 

between accuracy, computational resources, robustness, comparability with existing research, 

and the precision of estimates. The values chosen in this research study likely reflect a balance 

between these factors based on the specific context and objectives of the analysis. The forecasting 

analysis was executed for the following five periods, aligning with the five months succeeding 
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November 2023. The results of bootstrap-after-bootstrap prediction intervals and bootstrap 

bias-corrected point forecasts are presented in the table 2. 

 

Table 2. Forecasting results using bootstrap-after bootstrap approach 

Peri
ods 

B=100 B=250 B=500 B=1,000 B=10,000 

Point  
forec

ast 

5 
% 

95 
% 

Point  
forec

ast 

5 
% 

95
% 

Point  
forec

ast 

5 
% 

95 
% 

Point  
forec

ast 

5 
% 

95
% 

Point  
foreca

st 

5 
% 

95 
% 

h1 1.26 1.12 1.62 1.26 1.10 1.66 1.26 1.12 1.66 1.26 1.12 1.65 1.26 1.12 1.65 

h2 1.26 1.12 1.70 1.26 1.13 1.72 1.26 1.09 1.71 1.26 1.09 1.69 1.26 1.10 1.69 

h3 1.25 1.09 1.66 1.25 1.10 1.68 1.25 1.09 1.69 1.25 1.09 1.71 1.25 1.09 1.71 

h4 1.24 1.07 1.70 1.24 1.10 1.72 1.24 1.09 1.74 1.24 1.08 1.72 1.24 1.08 1.73 

h5 1.23 1.07 1.71 1.23 1.04 1.75 1.23 1.05 1.74 1.23 1.07 1.75 1.23 1.08 1.74 

 

The forecasting results presented in Table 1 and Table 2 demonstrate variations in both 

point forecasts and prediction intervals, reflecting differences in the methodologies employed. 

Table 1 showcases outcomes derived from a traditional autoregressive (AR) model, where a 

constant point forecast of 1.34 is observed across all forecast periods (h1 to h5). The values in 

Table 1 tend to be the same for all periods (h1 to h5) because the table utilizes results from a 

traditional autoregressive model. In an autoregressive model, predictions for each period are 

based on previous values in the time series, with the model estimating consistent parameters 

from past observations. In the context of Table 1, the consistent prediction values across all 

periods indicate that the autoregressive model may not account for changing trends, seasonal 

patterns, or other external factors that could affect the observed values over time. This suggests 

that the model might be too simplistic to capture the complexity of the observed data or that the 

data may not exhibit significant variation among the observed time periods. Table 2 employs the 

bootstrap-after-bootstrap approach, allowing for the generation of forecasts with varying 

numbers of bootstrap replications (B=100, 250, 500, 1,000, and 10,000). Here, the point forecasts 

exhibit slight fluctuations across different values of B, ranging from 1.23 to 1.26, albeit within a 

narrow margin. Likewise, the prediction intervals display minor variability, with lower bounds 

ranging from 1.04 to 1.12 and upper bounds spanning from 1.62 to 1.75 across different B values. 

Notably, higher B values generally lead to narrower prediction intervals, indicating improved 

precision. These differences underscore the impact of methodological choices on forecasting 

outcomes, with the traditional AR model offering consistent forecasts while the bootstrap-after-

bootstrap approach introduces slight variability, albeit with the potential for enhanced precision 

with increased bootstrap replications.  

From Table 2, the values of 5% and 95% referred to prediction intervals that encompass 

90% of the prediction distribution, with 5% on the lower side (lower bound) and 95% on the 

upper side (upper bound). The results of the prediction analysis using bias-corrected forecasts 

and bootstrap prediction intervals in Table 2 indicated consistent figures, with no significant 

differences observed. All point forecasts generated from varying numbers of bootstrap 

replications indicated the consistency of the results. 

In Table 2, the 5% and 95% values denoted prediction intervals that cover 90% of the 

prediction distribution, allocating 5% to the lower side (lower bound) and 95% to the upper side 

(upper bound). The prediction analysis results, employing the bootstrap-after-bootstrap 

technique and bootstrap prediction intervals, as shown in Table 2, exhibited uniform figures with 

no notable disparities. The coherence in results was evident across all point forecasts derived 
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from different numbers of bootstrap replications  (Hyndman & Athanasopoulos, 2018; 

Mahmudah et al., 2023). Moreover, Table 2 illustrated the robust stability of the model utilized 

for prediction analysis, indicating that it was not responsive to fluctuations in bootstrap data. The 

point forecasts exhibited a notable degree of consistency, regardless of the specific value of B 

employed. 

Furthermore, the results of the predictive analysis on point forecasts for the upcoming 5 

periods suggest a decline in the export value of oil and gas in Indonesia, with the predicted values 

being 1.26, 1.26, 1.25, 1.24, and 1.23, respectively. The estimate starts with the export value 

remaining stable at $1.26 billion for the first two quarters, indicating a short plateau before the 

fall begins. By the third period, there is a modest reduction as the value falls to $1.25 billion, 

confirming the start of a downtrend. This pattern continues into the fourth period, with export 

value dropping to $1.24 billion. By the fifth period, the reduction has progressed to the lowest 

estimated value of $1.23 billion. These figures represent the anticipated values for each period 

and imply a downward trend in the export values over the specified time frame. The numerical 

values signify the model's predictions for the upcoming months, indicating a potential contraction 

in the export values of oil and gas based on the established forecasting model. 

Figure 3 illustrates the representation of point forecasts and prediction intervals with 

different numbers of bootstrap replications: B=100, 250, 500, 1000, and 10000. This research 

utilized quantile estimates, explicitly focusing on quartiles derived from the estimated 

distribution. The purpose of employing prediction intervals was to evaluate the coverage 

probability within the specified range under the distribution (Hyndman & Athanasopoulos, 2018; 

Mahmudah et al., 2023). In this research, a 95% prediction interval was utilized, determined by 

extracting the 2.5% and 97.5% quantiles from the forecast distribution. The adoption of this 95% 

prediction interval aligns with its common use in forecasting analysis, alongside the frequently 

employed 80% prediction interval (Chamdani et al., 2019; De Livera et al., 2011; Hyndman & 

Athanasopoulos, 2018). 

In Figure 3, the blue line corresponds to the point forecasts for the anticipated data 

spanning the subsequent 5 periods (months). Concurrently, the red line signifies the prediction 

intervals. It is noteworthy that as the prediction analysis indicated increased uncertainty, the 

prediction intervals tended to expand. The visualization of prediction intervals also serves as a 

means to assess the effectiveness of forecasting models. As observed in Figure 3, the consistent 

alignment of point forecasts within the prediction intervals suggests that the model adeptly 

captures the variability inherent in the data. 

Moreover, as depicted in Figure 3, a distinct pattern emerges concerning the smoothness 

of prediction intervals at different levels of B. For B=100 and B=250, the intervals exhibit a 

relatively less smooth trajectory. This implies that with a lower number of bootstrap replications, 

the intervals tend to be more jagged and less consistent. This phenomenon is likely attributed to 

the limited sampling variability captured by a smaller number of bootstrap samples. 

Contrastingly, as the number of bootstrap replications increases to B=500 and B=1000, a 

discernible improvement in smoothness becomes apparent. The prediction intervals manifest a 

notably smoother and more continuous pattern, suggesting enhanced stability and reliability in 

capturing the underlying variability of the data. This phenomenon aligns with the fundamental 

principle of bootstrap methods, where a more significant number of replications leads to a more 

accurate representation of the population distribution. Noteworthy is the substantial increase in 

smoothness observed when B=10000. At this level of replications, the prediction intervals reach 

their peak smoothness. This observation underscores the asymptotic behavior of bootstrap 

methods, indicating that as the number of replications approaches infinity, the estimation 
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becomes increasingly precise, resulting in smoother and more refined prediction intervals 

(Chernick & LaBudde, 2014; Mahmudah, 2023; Thombs & Schucany, 1990). 

 

 
(a) 

 
(b) 

 

 
(c) 

 
(d) 

 
(e) 

 

Figure 3. a) Time plot and prediction intervals (B=100); b) Time plot and prediction intervals (B=250); c) 

Time plot and prediction intervals (B=500); d) Time plot and prediction intervals (B=1000); e) Time plot 

and prediction intervals (B=10000) 

 

These findings have significant implications for the application of bootstrap-after-

bootstrap in autoregressive models, particularly when analyzing the Indonesian value of exports 

in the oil and gas sector. The choice of an optimal number of bootstrap replications is crucial, as 

it directly influences the smoothness and reliability of prediction intervals, ultimately impacting 

the accuracy of model predictions and the robustness of statistical inferences (Hyndman & 

Athanasopoulos, 2018; Kim, 2001; Masarotto, 1990). 

In conclusion, Figure 3 provides a visual representation of the relationship between the 

number of bootstrap replications and the smoothness of prediction intervals. The insights gained 

from this analysis contribute to the refinement of the Bootstrap-after-bootstrap methodology, 

offering researchers and practitioners a nuanced understanding of how the choice of B influences 

the stability and precision of autoregressive model predictions in the specific context of 

Indonesian oil and gas exports. 
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Conclusion 
 

In conclusion, this research utilized a hybrid methodology integrating autoregressive 

models and the bootstrap-after-bootstrap approach to predict the value of oil and gas exports in 

Indonesia. The analysis identified the AR(2) model as the optimal choice based on minimized AIC, 

BIC, and HQ values. The investigation into varying numbers of bootstrap replications revealed 

that higher replication numbers, particularly B=10000, resulted in the smoothest prediction 

intervals, emphasizing the precision of the bootstrap-after-bootstrap method. Furthermore, this 

research's predictive analysis for the upcoming five periods indicated a projected decline in the 

export value of oil and gas in Indonesia. This insight underscores the importance of accurate 

forecasting in anticipating economic trends and making informed decisions. Overall, the findings 

of this research highlight the effectiveness of the bootstrap-after-bootstrap approach in 

enhancing the accuracy of parameter estimates and providing robust prediction intervals. The 

method's ability to offer a precise and conservative evaluation of future uncertainties is 

particularly valuable for decision-makers in the context of Indonesia's oil and gas export market. 

Future research may explore additional complexities and external factors to refine predictive 

models further and contribute to a more comprehensive understanding of the dynamics 

influencing oil and gas export values. This includes evaluating the influence of geopolitical 

changes like trade sanctions and international relations, as well as technical improvements that 

may change production efficiencies or introduce feasible renewable alternatives. Furthermore, 

assessing the impact of environmental policies, such as emissions laws, and broader economic 

conditions, such as global recessions or growth periods, could provide more information. The 

research may also take into account trends in consumer behavior toward more sustainable 

energy sources, as well as the resilience of supply chains to disruption. Collectively, these 

elements can improve predictive models and provide a more comprehensive picture of global 

energy markets. 
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