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ABSTRACT 
 
This paper is aimed to solve nonlinear fractional integro-differential equations, specifically of the 
Volterra-types, utilizing newly constructed versatile canonical polynomials. The technique involves the 
use of the Lanczos method. The popular numerical method known as the collocation method is presented 
to evaluate the evolving equations and subsequently to determine the values of the embedded unknown 
coefficients. The equations exhibit both derivatives and integrals. The resulting approximate solutions 
are compared with the given exact solutions. Numerical experiments are conducted to showcase the 
efficiency and accuracy of the technique, which is achieved by estimating the errors in the approximate 
solutions in order to significantly establish the convergence of the method. The mathematical tool 
utilized to obtain the required results is Maple 18 software package. 
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Introduction 
 

Series of nonlinear equations had been visited and desirable solutions were achieved 
analytically. For instance in (Ogunbamike et al., 2019; Shahid & Shah, 2024), whereby the 
convergence of differential transform method was investigated on nonlinear systems of 
equations; and operational matrix of integration based on the Taylor wavelet technique was 
adopted to solve nonlinear Stratonovich-Volterra integral equations respectively. The solution of 
nonlinear integral equations was also verified by (Pooja et al., 2025) whereby the approximation 
of unknown functions was carried out using the generalized Bell polynomials. The reliability and 
the performance of the methods were showcased by the results. However, where analytical 
methods are incapacitated to handle situations related to these, the problems would not be 
absolutely solved, hence there is need to consider the behaviours of the equations close to the 
initial points as good approximations. In recent years, many situations pertinent to this, 
particularly in Physics and Engineering fields such as fluid mechanics, solid dynamics, solid state 
physics e.t.c., that lead to integral equations were not easily analytically solved as investigated in 
(Li & Huang, 2016). Therefore with the aid of numerical methods, qualitative approaches have 
been explicitly considered using a variety of methods such as the Collocation and Block methods 
by different authors to overcome the barriers. This is confirmed in (Owolanke et al., 2017; 2019; 
2021; Yakusak & Owolanke, 2017; Okedayo et al., 2018) to be mentioned but few; they are all 
based on the Collocation and Block numerical techniques. 
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Integro-differential equations are described as integral equations in terms of derivatives. 
Its special kind is the Volterra-type, which appears when initial value problems are converted to 
integral equations, such that at least one of the limits of the integration is a variable. Many 
scientific and engineering applications are described using the equation, which has been verified 
in population growth models, diffraction models, heat radiation, water waves, scattering in 
quantum mechanics, and electromagnetic scattering problems. Researchers have worked 
towards investigating reliable solutions to the problems posed in terms Volterra integro-
differential equations in the years past and recently; to mention but few are (Shayamford et al., 
2020; Suayip & Gamze, 2022; Aourir & Dastjerdi, 2024; Amam et al., 2024). The numerical 
technique adopted by the aformentioned authors is the popular Collocation method. 

Furthermore, one of the conventional approaches adopted for solving nonlinear problems 
is the method of linearization. The technique is very effective, particularly while analyzing the 
stability of fixed points of nonlinear problems subject to Taylor series expansion. The technique 
is adopted to solve a system of nonlinear equations that emerged from a Biological population 
model in (Morgan, 2015); the method is also used in (Lei, 2020), whereby a sequence of nonlinear 
equations is transformed into a system of linear equations using Newton's method. Due to its 
resulting cumbersomeness in terms of computational costs and inconsistencies, scholars have 
however diversified, developing a series of numerical methods, providing approximate solutions 
to the embattled barrier. For instance, Adomian Decomposition Method (ADM) and Variational 
Iteration Method (VIM) are versatile techniques for solving nonlinear fractional differential 
equations; they are highly rated and consequently considered to be relevant due to their 
efficiencies and effectiveness in handling the differential equations, by supplying approximations 
that rapidly converge. A notable example is the Elzaki-Adomian Decomposition Method (EADM), 
which is a hybrid of the Elzaki transform and Adomian decomposition method. It solves nonlinear 
partial differential equations as revealed in (Orapine et al., 2022). 

In addition, another useful method that is applicable in finding an approximate solution 
to nonlinear differential equations is the Variational Iteration Method (VIM) as verified by a few 
authors; among them is (Bonnano et al., 2021), whereby a sixth order nonlinear ordinary 
differential equations is investigated to verify the existence of nontrivial solutions. Another 
popular method, specifically for this purpose is the Collocation method; whose technique involves 
defining equations in terms of coefficients on a set of points within an interval of consideration in 
order to generate systems of equations. The equations are subsequently solved finding the values 
of the coefficients in any given assumed solutions. For instance, a Spectral Collocation Method 
(SCM) is applied (Zhou & Dai, 2021) to analyze a coupled system of nonlinear fractional 
differential equations, where the given system is first reduced to a system of integral equations 
before it is discretized; Legendre polynomials are used as the basis function for the approximate 
solution. The collocation method is also used in (Lei et al., 2020) to solve nonlinear fractional 
delay differential equations based on Legendre multiwavelets; the error estimation of the 
approximate solutions is shown. Moreover, the wavelet collocation method was used in (Shahid 
et al., 2024) to solve perturbed difference equations. 

Nonlinear fractional integro-differential equations are mathematical models often 
encountered in various fields of Science and Engineering. One of the numerical techniques used 
is the collocation method, as discussed in (Parisa & Yadollah, 2020; Bragdi, 2020; Khalid et al., 
2020; Pooja et al., 2023; Shah et al., 2023; Pooja & Shah, 2023). Canonical polynomials illustrated 
in (Owolanke et al., 2019) are constructed to provide approximate solutions to some linear 
fractional integro-differential equations. The polynomial was introduced by Lanczos alongside 
Tau method; the recursive formulation was carried out in (Ortiz, 1969). The method is however 
extensively discussed in (Lanczos,1956; 1973), whereby the solution to a first order differential 
equation is investigated by approximating the derivatives and the unknown function by the 
canonical polynomial to a certain degree. Its effectiveness is confirmed when the interval of 
integration is subdivided into definite sub-intervals while the approximate value of the unknown 
function is denoted by 𝑦𝑝(𝑥) in 𝑥𝑝.  Therefore, with the given papers mentioned above, this paper 

is focused on the numerical solution of nonlinear fractional integro-differential equations of the 
Volterra-type, using new canonical polynomials. The Volterra integro-differential equations has 
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been investigated in (Taiwo et al., 2023), using the Galerkin Method with orthogonal polynomials 
as basis functions, however the newly constructed Canonical polynomials are utilized in this 
paper as the basis function so as to establish the convergence of nonlinear equations. 
 
Description of Fractional Derivatives 

The Riemann-Liouville and Caputo methods are very fundamental in any study of the 
theory of fractional derivatives. The Riemann-Liouville fractional derivative denoted by 𝑤𝑛𝑓(𝑡) 
is defined as follows 

𝑤𝑛𝑓(𝑡) = 𝑤𝑛𝑄𝑞 , 𝑞 > 0                                                                                                         (1)     
 
Equivalently written as 

𝑤𝑛𝑓(𝑡) = 𝑤𝑛
1

𝛤(𝑛 − 𝑞)
∫(𝑡 − 𝜏)𝑛−𝑞−1𝑓(𝜏)𝑑𝜏,   𝑛 − 1 < 𝑞 < 𝑛                                      (2)

𝑥

0

 

 
Hence, the following properties hold as follow: 

1. 𝑤𝛼𝑥𝛽 =
𝛤(𝛽+1)

𝛤(𝛽+𝛼+1)
𝑥𝛽−𝛼                                                                                                      (3) 

2. 𝑗𝛼𝜔𝛼𝑓(𝑥) = 𝑓(𝑥) − ∑ 𝑓𝑘(0+)
𝑥𝑘

𝑘!
, 𝑥 > 0, 𝑚 − 1 < 𝛼 < 𝑚𝑚−1

𝑘=0                             (4) 

 
Methods 

Considering nth-order fractional integro-differential equations of the form 

𝐾𝛼𝑦(𝑥) + 𝐴(𝑥)𝑦(𝑥) + 𝐵(𝑥)𝑦′(𝑥) + 𝐶(𝑥)𝑦′′(𝑥) + ⋯+ 𝑁(𝑥)𝑦𝑛(𝑥)

+ ∫
𝑦(𝑠)

(𝑘 − 𝑥)
𝑑𝑠 = 𝑓(𝑥),                                                                                  (5)

𝑥

0

 

where,  
𝐾𝛼𝑦(𝑥)          

=  

{
 
 

 
 1

𝛤(𝑚 − 𝛼)
∫(𝑥 − 𝑞)𝑚−𝑞−1𝐷𝑚𝑓(𝜏)𝑑𝜏,          𝑚 − 1 < 𝑞 < 𝑚                                     (6)

𝑥

0

𝑑𝑚𝑓(𝑥)

𝑑𝑥𝑚
,   𝑞 = 𝑚,𝑚 ∈ ℵ                                                                                                                      

 

equation (5) becomes 

𝐾𝛼𝑦(𝑥) + 𝐴(𝑥)𝑦(𝑥) + 𝐵(𝑥)𝑦′(𝑥) + 𝐶(𝑥)𝑦′′(𝑥) + ⋯+ 𝑁(𝑥)𝑦𝑛(𝑥) = 𝐹(𝑥)                 (7) 
 
Defining the differential operator D as  

𝐴
𝑑𝛼

𝑑𝑥𝛼
+ 𝐵

𝑑2

𝑑𝑥2
+ 𝐶

𝑑3

𝑑𝑥3
+⋯+𝑁

𝑑𝑛

𝑑𝑥𝑛
≡ 𝐷                                                                             (8) 

  𝐷𝑥𝑚 =
𝛤(𝑚 + 1)

𝛤(𝑚 + 1 − 𝛼)
𝑥𝑚−𝛼 + 𝐴𝑥𝑚 + 𝐵(𝑚)𝑥𝑚−1 + 𝐶(𝑚)(𝑚 − 1)𝑥𝑚−2 +⋯

+𝑁(𝑚)(𝑚 − 1)(𝑚 − 2)… (𝑚 − 𝑘 + 1)𝑥𝑚−𝑘                                            (9) 
 
by Lanczos (1956) 

𝐷𝑝𝑚(𝑥) = 𝑥
𝑚 , 𝑚 = 0,1,2,                                                                                                    (10) 

 
Then, equation (9) becomes 

  𝐷𝑥𝑚 =
𝛤(𝑚 + 1)

𝛤(𝑚 + 1 − 𝛼)
𝐷𝑝𝑚−𝛼(𝑥) + 𝐴𝐷𝑝𝑚(𝑥) + 𝐵(𝑚)𝐷𝑝𝑚−1(𝑥) + 𝐶(𝑚)(𝑚 − 1)𝐷𝑝𝑚−2(𝑥) + ⋯

+ 𝑁(𝑚)(𝑚 − 1)(𝑚 − 2)… (𝑚 − 𝑘 + 1)𝐷𝑝𝑚−𝑘(𝑥)                                           (11) 
 
Assuming the inverse of the operator in equation (11) exists, the equation becomes 
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  𝑥𝑚 =
𝛤(𝑚 + 1)

𝛤(𝑚 + 1 − 𝛼)
𝑝𝑚−𝛼(𝑥) + 𝐴𝑝𝑚(𝑥) + 𝐵(𝑚)𝑝𝑚−1(𝑥) + 𝐶(𝑚)(𝑚 − 1)𝑝𝑚−2(𝑥) + ⋯

+ 𝑁(𝑚)(𝑚 − 1)(𝑚 − 2)… (𝑚 − 𝑘 + 1)𝑝𝑚−𝑘(𝑥)                                          (12) 
Equation (12) can equivalently be written as  

𝑝𝑚(𝑥) =
1

𝐴
{  𝑥𝑚

− [
𝛤(𝑚 + 1)

𝛤(𝑚 + 1 − 𝛼)
𝑝𝑚−𝛼(𝑥) + 𝐵(𝑚)𝑝𝑚−1(𝑥) + 𝐶(𝑚)(𝑚 − 1)𝑝𝑚−2(𝑥) + ⋯

+𝑁(𝑚)(𝑚 − 1)(𝑚 − 2)… (𝑚 − 𝑘 + 1)𝑝𝑚−𝑘(𝑥) ] }                                      (13) 

 
Further simplification implies that 

𝑝𝑚(𝑥) =
1

𝐴
{  𝑥𝑚 − [

𝛤(𝑚 + 1)

𝛤(𝑚 + 1 − 𝛼)
𝑝𝑚−𝛼(𝑥) + 𝐵(𝑚)𝑝𝑚−1(𝑥) ] }                                           (14) 

 
is the required canonical polynomial of first order fractional integro-differential equations while 
that of the second order is truncated after the term   
𝐶(𝑚)(𝑚 − 1)𝑝𝑚−2(𝑥).  

It implies that the Canonical polynomial for the second order fractional integro-
differential equations as deduced from equation (13) is  

𝑝𝑚(𝑥) =
1

𝐴
{  𝑥𝑚

− [
𝛤(𝑚 + 1)

𝛤(𝑚 + 1 − 𝛼)
𝑝𝑚−𝛼(𝑥) + 𝐵(𝑚)𝑝𝑚−1(𝑥)

+ 𝐶(𝑚)(𝑚 − 1)𝑝𝑚−2(𝑥)] }                                                                                      (15) 

 
Standard Collocation Method  

This is a popular numerical method of solution of differential and integral equations. The  
technique is implemented in this paper to determine the values of the unknown constants in the 
assumed solution. Let the approximate solution for equation (5) be given as  

𝑔(𝑥) ≈ 𝑔𝑁(𝑥) =∑𝑐𝑗𝑧𝑗(𝑥),       𝑗 ≥ 0                                                                                               (16)

𝑁

𝑗=0

 

where the coefficients to be determined are  𝑐𝑗′𝑠, and 𝑧𝑗
′𝑠 represent the constructed canonical 

polynomials in equation (13). The degree of the approximation is denoted as N. Hence, 
substituting equation (16) into equation (5) yields 

𝑘𝛼∑𝑐𝑗𝑧𝑗(𝑥)

𝑁

𝑗=0

+ 𝐴(𝑥)∑𝑐𝑗𝑧𝑗(𝑥) + 𝐵(𝑥)

𝑁

𝑗=0

∑𝑐𝑗𝑧𝑗′(𝑥)

𝑁

𝑗=0

+ 𝐶(𝑥)∑
𝑐𝑗𝑧𝑗

′′(𝑥) +⋯+𝑁(𝑥)∑𝑐𝑗𝑧𝑗
𝑛(𝑥) + 𝜆∫

𝑔(𝑠)

(𝑘 − 𝑥)
 𝑑𝑠 = 𝑓(𝑥)                                (17)

𝑥

0

𝑁

𝑗=0

𝑁

𝑗=0

 

where, 𝑔(𝑠) is determined by the Taylor series approach in order to evaluate the integral. 

Let 𝑔(𝑠) = 𝑔𝑁(𝑥) + (𝑠 − 𝑥)𝑔𝑁
′ (𝑥) +

(𝑠−𝑥)2

2!
𝑔𝑁
′′ (𝑥) + ⋯+

(𝑠−𝑥)𝑛

𝑛!
𝑔𝑁

𝑛(𝑥)                                    (18) 

Thus, the integral part of equation (17) becomes 
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∫
1

(𝑘 − 𝑥)
[𝑔𝑁(𝑥) + (𝑠 − 𝑥)𝑔𝑁

′ (𝑥) +
(𝑠 − 𝑥)2

2!
𝑔𝑁
′′ (𝑥) + ⋯

𝑥

0

+
(𝑠 − 𝑥)𝑛

𝑛!
𝑔𝑁

𝑛(𝑥) ]  𝑑𝑠                                                                                    (19) 

  
where, 

𝑔𝑁(𝑥) = 𝑐0𝑧0(𝑥) + 𝑐1𝑧1(𝑥) + 𝑐2𝑧2(𝑥) + ⋯+ 𝑐𝑁𝑧𝑁(𝑥) 
𝑔𝑁′(𝑥) = 𝑐0𝑧0′(𝑥) + 𝑐1𝑧1′(𝑥) + 𝑐2𝑧2′(𝑥) + ⋯+ 𝑐𝑁𝑧𝑁′(𝑥) 
𝑔𝑁′′(𝑥) = 𝑐0𝑧0′′(𝑥) + 𝑐1𝑧1′′(𝑥) + 𝑐2𝑧2′′(𝑥) + ⋯+ 𝑐𝑁𝑧𝑁′′(𝑥) 

 
Hence, the 𝑛𝑡ℎ-derivative is written as  
𝑔𝑁

𝑛(𝑥) = 𝑐0𝑧0
𝑛(𝑥) + 𝑐1𝑧1

𝑛(𝑥) + 𝑐2𝑧2
𝑛(𝑥) +⋯+ 𝑐𝑁𝑧𝑁

𝑛(𝑥)                       (20) 
Solving equation (17) in terms of equations (18) and (19), it gives 
𝐾𝛼[𝑐0𝑧0(𝑥) + 𝑐1𝑧1(𝑥) + 𝑐2𝑧2(𝑥) + ⋯+ 𝑐𝑁𝑧𝑁(𝑥)] + 𝐴(𝑥)[𝑐0𝑧0(𝑥) + 𝑐1𝑧1(𝑥) + 𝑐2𝑧2(𝑥) + ⋯+

𝑐𝑁𝑧𝑁(𝑥)] + 𝐵(𝑥)[𝑐0𝑧0′(𝑥) + 𝑐1𝑧1′(𝑥) + 𝑐2𝑧2′(𝑥) + ⋯+ 𝑐𝑁𝑧𝑁′(𝑥)] + 𝐶(𝑥) [𝑐0𝑧0
′′(𝑥) + 𝑐1𝑧1

′′(𝑥) +

𝑐2𝑧2
′′(𝑥)

+⋯+ 𝑐𝑁𝑧𝑁
′′(𝑥)

] + ⋯+𝑁(𝑥)[𝑐0𝑧0
𝑛(𝑥) + 𝑐1𝑧1

𝑛(𝑥) + 𝑐2𝑧2
𝑛(𝑥) + ⋯+ 𝑐𝑁𝑧𝑁

𝑛(𝑥)] + 𝐺(𝑥) =

𝑓(𝑥)                                                                                                                                                               (21)   
where 𝐺(𝑥)denotes equations (18), (19), and system of equation (20). 
 

Collocating equation (21) at 𝑥 = 𝑥𝑘, such that 𝑥𝑘 = 𝑥0 +
(𝑥𝑛−𝑥0)𝑘

𝑗+1
, k=1,2,…,j to give 

𝐾𝛼[𝑐0𝑧0(𝑥𝑘) + 𝑐1𝑧1(𝑥𝑘) + 𝑐2𝑧2(𝑥𝑘) + ⋯+ 𝑐𝑁𝑧𝑁(𝑥𝑘)] + 𝐴(𝑥𝑘)[𝑐0𝑧0(𝑥𝑘) + 𝑐1𝑧1(𝑥𝑘) + 𝑐2𝑧2(𝑥𝑘) +
⋯+ 𝑐𝑁𝑧𝑁(𝑥𝑘)] + 𝐵(𝑥𝑘)[𝑐0𝑧0′(𝑥𝑘) + 𝑐1𝑧1′(𝑥𝑘) + 𝑐2𝑧2′(𝑥𝑘) + ⋯+ 𝑐𝑁𝑧𝑁′(𝑥𝑘)] +
𝐶(𝑥𝑘)[𝑐0𝑧0′′(𝑥𝑘) + 𝑐1𝑧1′′(𝑥𝑘) + 𝑐2𝑧2′′(𝑥𝑘) + ⋯+ 𝑐𝑁𝑧𝑁′′(𝑥𝑘)] + ⋯+ 𝑁(𝑥𝑘)[𝑐0𝑧0

𝑛(𝑥𝑘) +
𝑐1𝑧1

𝑛(𝑥𝑘) + 𝑐2𝑧2
𝑛(𝑥𝑘) + ⋯+ 𝑐𝑁𝑧𝑁

𝑛(𝑥𝑘)] + 𝐺(𝑥𝑘) =
𝑓(𝑥𝑘)                                                                                                                                                          (22)   
 
Numerical Experiments 
 

In this section, a few examples are considered in order to confirm the effectiveness of the 
method. 

Example 1: 𝐷
3

2𝑦(𝑥) + 2 (
𝑑𝑦

𝑑𝑥
)
2
+ 𝑥2

𝑑2𝑦

𝑑𝑥2
+ ∫

𝑦(𝑡)

(𝑥−𝑡)
1
3

 𝑑𝑡 = 4 + 1.128379167𝑥0.5 +
3

2
𝑥
2

3 + 8𝑥 +
𝑥

0

0.7522527778𝑥1.5 +
9

10
𝑥
5

3 + 7𝑥2 +
10

3
𝑥3 +

81

880
𝑥
11

3 +
27

80
𝑥
8

3       0 ≤ 𝑥 ≤ 1        𝑦(0) = 𝑦′(0) = 0 

                                                                                             
𝑬𝒙𝒂𝒄𝒕 𝒔𝒐𝒍𝒖𝒕𝒊𝒐𝒏:     𝑦(𝑥) = 𝑒𝑥 

Example 2: 

𝐷
1

2𝑦(𝑥) +
𝑑𝑦

𝑑𝑥
+ ∫2𝑦2(𝑡)𝑑𝑡

𝑥

0

= 10 + 11.28379187𝑥0.5 − 500𝑥2 − 300.9011112𝑥2.5 + 66.66666667𝑥3  
+ 4166.666666𝑥4  + 1910.483246𝑥4.5 − 1333.333334𝑥5 − 13888.88889𝑥6   
− 5344.009079𝑥6.5 + 12698.41270𝑥7 − 70546.737222𝑥9

+ 200000.465127465𝑥11 − 500000. 0875505086𝑥13

+−500000. 249013185𝑥15                   0 ≤ 𝑥 ≤ 1                     𝑦(0) = 𝑦′(0) = 0 
              𝑬𝒙𝒂𝒄𝒕 𝒔𝒐𝒍𝒖𝒕𝒊𝒐𝒏:     𝑦(𝑥) = sin (10𝑥) 
Example 3: 
𝑑2𝑦(𝑥)

𝑑𝑥2
+
𝑑1.5𝑦(𝑥)

𝑑𝑥1.5
+ 𝑦2(𝑥) + ∫

𝑦(𝑡)

√𝑥−𝑡
𝑑𝑡 = 18𝑐𝑜𝑠(3𝑥)2

𝑥

0
- 18𝑠𝑖𝑛(3𝑥)2 + 20.3108250𝑥0.5 −

1671.290743𝑥4.5 − 13899.41906𝑥8.5 + 79819.57292𝑥16..5 + 𝑠𝑖𝑛(3𝑥)4 +
48

5
𝑠𝑖𝑛(𝑥)

5

2 
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                                                                                             𝑬𝒙𝒂𝒄𝒕 𝒔𝒐𝒍𝒖𝒕𝒊𝒐𝒏:     𝑦(𝑥) = sin(3x)2 
 
Discussions of Results 

Based on the numerical results obtained from the three tested examples, the constructed 
canonical polynomial method demonstrates excellent performance in solving nonlinear 
fractional integro-differential equations of Volterra-type. 
 
Accuracy Analysis 

Example 1 exhibits exceptionally high accuracy with a maximum absolute error of 
2.8381E-06 at x = 0.7. This remarkably small error indicates that the method provides an 
approximation very close to the exact solution y(x) = ex. The relatively stable error pattern 
throughout the interval [0,1] demonstrates the method's consistency in maintaining accuracy 
across the computational domain. 

Example 2 shows satisfactory performance with the largest absolute error of 1.2248E-02 
at the endpoint x = 1.0. Although this error is larger compared to Example 1, it remains within 
acceptable tolerance limits for numerical solutions. The increasing error trend toward the 
interval's end suggests that the method maintains good stability in the initial portion of the 
interval but requires special attention for longer computational domains. 

Example 3 presents more significant error variation, with a maximum error of 9.5008E-
02 at x = 0.3. Despite this relatively larger error, the convergence pattern observed at the 
endpoint (zero error at x = 1.0) demonstrates that the method can still handle equations with 
higher complexity effectively. 
 
Convergence and Stability 

The graphs presented in Figures 1 clearly show that the approximate solutions follow the 
exact solution patterns very closely. This confirms the convergence of the developed canonical 
polynomial method. Numerical stability is evident from the absence of spurious oscillations or 
irregular fluctuations in the approximate solutions. 
 
Computational Efficiency 

The use of different polynomial degrees (N=11 for Example 1, N=14 for Example 2, and 
N=13 for Example 3) demonstrates the method's flexibility in adapting to problem complexity 
(Table 1-3). This approach allows for controlling the balance between accuracy and 
computational burden. 

 
Table 1. Absolute Errors of Example 1 for Case N=11 

𝐱 𝐄𝐱𝐚𝐜𝐭 𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧 𝐀𝐩𝐩𝐫𝐨𝐱𝐢𝐦𝐚𝐭𝐞 𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧 𝐀𝐛𝐬𝐨𝐥𝐮𝐭𝐞 𝐄𝐫𝐫𝐨𝐫𝐬 
0.000 0.00000000 0.00000000 0.00000000 
0.100 1.10517092 1.105170888 3.2201𝐸 − 08 
0.200 1.22140276 1.221402667 9.2954𝐸 − 08 
0.300 1.34985881 1.349858796 1.4298𝐸 − 08 
0.400 1.49182470 1.491824540 1.5958𝐸 − 07 
0.500 1.64872127 1.648721136 1.3365𝐸 − 07 
0.600 1.82211880 1.822118128 6.7224𝐸 − 07 
0.700 2.01375271 2.013749872 2.8381𝐸 − 06 
0.800 2.22554093 2.225539592 1.3376E − 06 
0.900 2.45960311 2.459600891 2.2190E − 06 
1.000 2.71828183 2.718279251 2.5790𝐸 − 06 

 
Advantages of the Developed Method 
 High Accuracy: Errors in the order of 10-6 to 10-2 demonstrate excellent precision for practical 

applications. 
 Versatility: The method successfully handles various types of nonlinear fractional integro-

differential equations with different characteristics. 
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 Numerical Stability: No significant numerical instabilities are observed throughout the 
computational intervals. 

 Direct Implementation: The method does not require prior linearization processes, making it 
more efficient in application. 
 

Table 2. Absolute Errors of Example 2 for Case N=14 
𝐱 𝐄𝐱𝐚𝐜𝐭 𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧 𝐀𝐩𝐩𝐫𝐨𝐱𝐢𝐦𝐚𝐭𝐞 𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧 𝐀𝐛𝐬𝐨𝐥𝐮𝐭𝐞 𝐄𝐫𝐫𝐨𝐫𝐬 

0.000 0.00000000 0.000005800 5.8000𝐸 − 06 
0.100 0.84147098 0.8414691884 1.7916𝐸 − 06 
0.200 0.90929743 0.9092946185 2.8115𝐸 − 06 
0.300 0.14112001 0.1411187640 1.2460𝐸 − 06 
0.400 −0.75680250 −0.7568061952 3.6952𝐸 − 06 
0.500 −0.95892427 −0.9589272386 2.9686𝐸 − 06 
0.600 −0.27941550 −0.2794165040 1.0040𝐸 − 06 
0.700 0.65698660 0.6569839484 2.6516𝐸 − 06 
0.800 0.98935825 0.989326216 3.2034E − 05 
0.900 0.41211849 0.41080049 1.3180E − 03 
1.000 −0.54402111 −0.55626911 1.2248𝑒 − 02 

 
Table 3. Absolute Errors of Example 3 for Case N=13 

𝐱 𝐄𝐱𝐚𝐜𝐭 𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧 𝐀𝐩𝐩𝐫𝐨𝐱𝐢𝐦𝐚𝐭𝐞 𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧 𝐀𝐛𝐬𝐨𝐥𝐮𝐭𝐞 𝐄𝐫𝐫𝐨𝐫𝐬 
0.000 0.00000000 0.00000000 0.00000000 
0.100 0.08733219 0.12900742  4.1675𝐸 − 02 
0.200 0.31882112 0.40644702 8.7626𝐸 − 02 
0.300 0.61360105 0.70860909 9.5008𝐸 − 02 
0.400 0.86869686  0.92883996 6.0143𝐸 − 02 
0.500 0.99499625 0.99944563 4.4494𝐸 − 03 
0.600 0.94837921 0.90579454  4.2585𝐸 − 02 
0.700 0.74513041  0.68475017 6.0380𝐸 − 02 
0.800 0.45625051  0.40910898  4.7142E − 02 
0.900 0.18265356 0.16362805 1.9026E − 02 
1.000 0.01991486 0.01991486 0.0000𝐸 + 00 

 

  
(a)                                                                         (b) 

Figure 1. The comparism graph of Example (a) 2 and (b) 3 

 
Comparison with Other Methods 

Compared to conventional methods that require linearization, the developed canonical 
polynomial approach offers advantages in terms of: 
 Avoiding additional computational complexity from linearization processes 
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 Preserving the nonlinear characteristics of the original equations 
 Providing more accurate approximations for nonlinear problems 

 
Error Behavior and Convergence Characteristics 

The error analysis reveals distinct patterns across the three examples: 
 Example 1 shows uniform convergence with consistently small errors, indicating excellent 

stability for exponential-type solutions. 
 Example 2 demonstrates good initial accuracy with gradual error growth, suggesting the need 

for adaptive strategies for trigonometric functions over extended domains. 
 Example 3 exhibits variable error patterns but maintains overall convergence, confirming the 

method's robustness for complex nonlinear scenarios. 
 

Practical Implications 
The results demonstrate that the canonical polynomial method is particularly well-suited 

for: 
 Problems requiring high precision in moderate intervals 
 Nonlinear systems where linearization introduces significant approximation errors 
 Applications in physics and engineering where fractional derivatives model memory effects 

 
Limitations and Recommendations 

While the method shows excellent performance, several aspects warrant attention: 
 Polynomial Degree Selection: The optimal polynomial degree should be determined based on 

problem complexity and desired accuracy levels. Higher degrees may improve accuracy but 
increase computational cost. 

 Computational Domain: For longer intervals, domain subdivision or parameter adjustment 
may be necessary to maintain accuracy, particularly evident from Example 2's behavior. 

 Further Validation: Testing on broader classes of nonlinear fractional integro-differential 
equations would strengthen the method's validity and establish its general applicability. 

 Adaptive Strategies: Implementation of adaptive degree selection or interval subdivision 
could enhance the method's robustness for challenging problems. 

 
Comparison with Literature 

The achieved accuracy levels compare favorably with existing methods reported in the 
literature. The direct approach to nonlinear problems without linearization represents a 
significant advancement over traditional techniques, offering both computational efficiency and 
solution accuracy. 
 
Conclusion 
 
        In this paper, the numerical solution of nonlinear fractional integro-differential equations of 
the Volterra-type was investigated, in which new canonical polynomials were constructed and 
used as basis functions. The effectiveness of the approach is demonstrated on numerical 
examples with initial conditions without first undergoing the process linearization. The outcome 
of the findings is presented by means of the depicted table of results and graphs. In view of all of 
these, it can be inferred that the approach is reliable to handle equations of this kind.    
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