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ABSTRACT 
This study proposes a new theoretical model based on Green's function formalism for studying proton 
tunneling via hydrogen bonding. This approach allows calculating the tunneling probability and the 
tunneling energy that proton transfer occurs along a given path inferred a priori. The method is extended 
to multiple protons tunneling, characterizing the behaviour of some biological molecules. Specifically, 
the cases of the proton transfer in the Fujicurin A molecule and the double proton tunneling in the 
Guanine-Cytosine base-pair are investigated. The new approach is an alternative to those present in the 
literature. It allows straightforwardly predicting the mechanisms of intramolecular and intermolecular 
proton transfers involving the rearrangement of conjugated electrons. 
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Introduction 
 

Proton tunneling is a quantum tunneling involving the transfer of a proton from one site 
to an adjacent site of a given molecule separated by a potential barrier (Klinman & Kohen, 2013; 
Meng et al., 2015; Pinotsi et al., 2016). This model is equivalent to a double-well potential, whose 
geometry depends on the chemical nature of the donor and acceptor and the chemical-physical 
properties of the environment. According to the Wentzel-Kramers-Brillouin approximation 
(WKB), the probability for a particle to tunnel is inversely proportional to its mass and the width 
of the potential barrier (Bountis, 1992). A proton is about 2000 times more massive than an 
electron, so it has a much lower tunneling probability. Nevertheless, proton tunneling still occurs, 
especially in molecules where the proton participates in a hydrogen bond (Butenhoff & Moore, 
1988; Fillaux et al., 2007; Jana & Ganguly, 2018; Marais et al., 2018). The latter contributes to a 
decrease in both the width and the height of the potential barrier, above all if its covalent 
character is predominant to the purely electrostatic one. Proton transfer via hydrogen bond plays 
a crucial role in the tautomerism phenomena of biological molecules and is at the basis of the 
mechanisms governing many reactions involving proteins (Golo & Volkov, 2003; Horsewill et al., 
2001; Matsui, 2022; McMahon, 2003; Slocombe et al., 2022). For this reason, proton tunneling 
has always attracted the attention of experimental and theoretical chemists to understand its 
dynamics and find the variables governing it. The study has been conducted in the last decades 
using the most disparate approaches, from DFT (density functional theory) (Sapse, 1998; Sarai & 
DeVault, 1986) to HH/DD KIE (kinetic isotope effects) (Cheng et al., 2022; Hans-Heinrich Limbach 
et al., 1982; Limbach et al., 2006), passing through machine learning force fields (Unke et al., 
2021) and QM/MM (Quantum Mechanics/Molecular Mechanics) methods (Faulder et al., 2001; 
Ranaghan et al., 2017; Sole et al., 2020). However, none of these methods suggests the reaction 
pathway inside the potential barrier because tunneling is a quantum phenomenon fuzzy by 
Heisenberg's uncertainty principle (the potential barrier separating the two reaction sites is 
classically forbidden and cannot be investigated experimentally). 

http://journal.walisongo.ac.id/index.php/jnsmr
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In this study, the proton tunneling via hydrogen bonding is investigated using the Green 
function (GF) formalism (Barton, 2005; Seremet, 2022; Setten et al., 2015). This method, widely 
used in quantum field theory (Herrera et al., 2021), makes it possible to calculate the probability 
by which a given physical phenomenon occurs according to a possible path predetermined a 
priori. In our case, the reaction pathway is constructed using a set of atomic and molecular 
orbitals arbitrarily chosen among those potentially involved in the proton transfer. This makes it 
potential to construct different reaction paths and calculate their probabilities to predict on a 
theoretical foot what happens mechanistically inside the potential barrier. We addressed the 
study through GF formalism since it is more general than the wavefunction. GF carries 
information about the history of the particle, from the initial state (in our case, the proton bonded 
to the donor group and interacting via hydrogen bond with the acceptor site) to the final state 
(the proton bonded to the acceptor group and interacting via hydrogen bond with the donor site), 
and is governed by an equation of motion (the Dyson equation) that is simpler to solve than 
Schrodinger’s (Lambert, 2021; Sieber, 2007). 

The paper is organized as follows: in section 2, the motivation for using the GF formalism 
and its physical meaning is briefly discussed to facilitate reading and understanding of the 
following sections. In section 3, the theoretical model that leads to calculating the tunneling 
probability and the tunneling energy associated with a predetermined reaction pathway is 
formulated. Section 4 discusses some examples of how the proposed method works. The cases of 
single proton tunneling via intramolecular hydrogen bond and double proton tunneling via 
intermolecular hydrogen bond are investigated. 
 

Motivation and GF Formalism 
 

Let us consider a donor group D, belonging to a generic molecule, to which hydrogen is 
chemically bonded. This group interacts with an acceptor site A via hydrogen bonding 
(intramolecular, if A belongs to the same molecule, intermolecular if A belongs to another 
molecule). Suppose proton transfer from the donor site to the acceptor site is chemically allowed 
(from a thermodynamics and kinetics point of view). The model we are considering is shown in 
Figure 1. 
 

 

 
Figure 1. schematic model of proton tunneling via hydrogen bond. 

 
The height ∆𝐺# and the length of the potential barrier separating the energy well of the 

D-H bond from that of the H-A bond depend on the nature of the hydrogen bond (depending on 
the geometry, the environment, and the nature of the specific donor and acceptor atoms, the 
hydrogen bond energy varies between some Kcal/mol to about 60 Kcal/mol). In principle, the 
stronger the hydrogen bond and the lower are height and length of the potential barrier. If the 
donor group is thermally activated, i.e. the energy of the reaction site is higher than ∆𝐺#, then the 
proton transfer takes place according to a classical pathway. Otherwise, the reaction can only 
occur by quantum tunneling. This last process is the one that characterizes almost all of the 
tautomerism in biological molecules, given that the vital processes take place at temperatures of 
the order of tens of degrees Celsius (Krishtalik, 2000; Scheiner et al., 1986). 
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Studying the dynamics of proton transfer in the classically forbidden region (where the 
proton behaves like an evanescent wave) means calculating the tunneling matrix, which maps the 
left boundary values of the solution of the Schrodinger equation, represented by the D-H bond, 
onto the right ones, represented by the H-A bond. This can be done by solving the Schrodinger 
equation in which the potential energy operator is represented by the double well's energy 
profile, which defines the proton tunneling between the initial state, the D-H bond, and the final 
one, the H-A bond. Analytically solving such a problem involves using unusual mathematical tools 
for the chemist (the solution leads to fifth-degree algebraic equations) and laborious calculations 
(Vshivtsev et al., 1998). Since the tunneling matrix describes the propagation of the analytical 
solution across the potential barrier, it can be expressed as a GF. The latter is the mathematical 
form of the Feynman propagator, used to study scattering phenomena in quantum field theory, 
which describes the probability amplitude of a physical phenomenon. Notably, for the problem 
being studied, it represents the probability of proton tunneling along the direction of the 
hydrogen bond connecting the donor and acceptor groups. This probability depends on the path 
through the classically forbidden region (reaction mechanism). This path is not unique, and in 
principle, it is constructed arbitrarily, even if coherently with the chemical-physical properties 
that define the problem. All possible reaction pathways are obtained by varying one or more steps 
composing it. As we will see shortly, the steps are represented by molecular and atomic orbitals. 
This is the rationale on which the theory we propose in this study is based. 

We need to know the Hamiltonian operator within the potential barrier to compute the 
tunneling matrix. The equation relating the Hamiltonian operator with the GF is (Seremet, 2022) 
 

 𝑖ℏ𝐺(𝒓, 𝑡; 𝒓′, 𝑡′) = 𝛩(𝑡 − 𝑡′)⟨𝛹0(𝑡)|�̂�(𝒓)𝑒
−𝑖𝐻(𝑡−𝑡′)/ℏ�̂�†(𝒓′)|𝛹0(𝑡′)⟩, (1) 

 
where 𝐺(𝒓, 𝑡; 𝒓′, 𝑡′), 𝛩(𝑡 − 𝑡′) and 𝐻(𝑡 − 𝑡′) are the GF, Heaviside function and Hamiltonian, 
respectively. The term �̂�†(𝒓′)|𝛹0(𝑡′)⟩ is the state with an added electron in 𝒓′ to the N-electron 

ground-state at time t’. The operator 𝑒−𝑖𝐻(𝑡−𝑡
′)/ℏ propagates the state �̂�†(𝒓′)|𝛹0(𝑡′)⟩ from the 

time 𝑡′ to the time 𝑡. The term ⟨𝛹0(𝑡)|�̂�(𝒓) denotes the state where one electron is added in 𝒓 to 

the N-electron ground-state at time 𝑡. In time domain, the GF is represented by (Seremet, 2022) 
 

 𝐺(𝒓, 𝑡; 𝒓′, 𝑡′) = ∑𝜑𝑛(𝒓)𝜑𝑛
∗(𝒓′)𝑒−𝑖𝐻𝑛(𝑡−𝑡

′)/ℏ

𝑛

. (2) 

 
where 𝜑𝑛(𝒓) are wavefunction describing the nth step of the path (this aspect of the theory will 
be clarified in the next section). Eq. 2 is the GF obtained by summing all the propagators 
associated with each step forming the whole path. Applying the Laplace-Fourier transform to Eq. 
2, the GF representation in the frequency (energy) domain is obtained (Seremet, 2022) 
 

 𝐺(𝒓, 𝒓′; 𝐸) = ∫ 𝐺(𝒓, 𝑡; 𝒓′, 𝑡′)𝑒−𝑖𝐻/ℏ𝑑𝑡 = 𝑖ℏ
∞

0

∑
𝜑𝑛(𝒓)𝜑𝑛

∗(𝒓′)

𝐸 − 𝐸𝑛
𝑛

, (3) 

 
where 𝐸 = ℏ𝜔. Let us now introduce the Dyson equation. For this purpose, we denote by U a 
perturbative potential, which is small compared to the energy of the unperturbed system. If 𝐺0 is 
the GF of the unperturbed system, then the propagator within the perturbed region is given by 
(Seremet, 2022) 
 

 𝐺 = 𝐺0 + 𝐺0𝑈𝐺. (4) 
 

This equation is fundamental for the formulation of the proton tunneling theory being 
proposed. Indeed, the height of the potential barrier is small compared to the energy of the D-H 
and H-A bonds, and, therefore, the GFs describing the system in the wells' regions can be 
considered free propagators. Their value within the potential barrier is easily calculated using Eq. 
4. The same holds for the GFs associated with the molecular and atomic orbitals forming the 
reaction pathway, as demonstrated in the next section. We now have the necessary and sufficient 
mathematical tools to develop the theory. 
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Proton Tunneling: The Governing Model 
 

Let us consider a particle (hydrogen atom) in a one-dimensional symmetric double well. 
Analytically, the potential curve can be written as follows (Baradaran & Panahi, 2017) 
 

 𝑈(𝑥) = ∆𝐺0
#(𝑥2 − 𝑎2)2, (5) 

 
where ∆𝐺0

# is the barrier heigh, 𝑎 is the distance 𝑎 = |𝑥0 − 𝑥1|. The coordinates 𝑥0 and 𝑥1 are 

such that 𝑈(𝑥0) = ∆𝐺0
# and 𝑈(𝑥1) = 𝑚𝑖𝑛𝑈(𝑥), i.e. 𝑎 is the distance between the centre of the 

potential barrier and the minimum of the well. The Schrodinger equation (SE) for this system 
reads 
 

 [−
ℏ2

2𝑚

𝑑2

𝑑𝑥2
+ ∆𝐺0

#(𝑥2 − 𝑎2)2] 𝜑(𝑥) = 𝐸𝜑(𝑥). (6) 

 
Eq. 6 provides a spectrum of discrete energies 𝐸𝑛(∆𝐺0

#, 𝑎) which depends on the geometry of the 

potential curve. Solving Eq. 6 allows for obtaining the energies and the tunneling probabilities but 
is a challenging task from a mathematical point of view. This difficulty is overcome if GF formalism 
is used. GF is a solution of the inhomogeneous differential equation 
 

 [𝑧 − 𝐿(𝑥)]𝐺(𝑥, 𝑥′; 𝑧) = 𝛿(𝑥 − 𝑥′), (7) 
 
where 𝐿(𝑥) is a linear Hermitian time-independent operator, 𝛿 is the Dirac function, and 𝑧 ∈ ℂ is 
a parameter. Operator 𝐿(𝑥) satisfies to the following eigenvalue equation 
 

 𝐿(𝑥)𝜑𝑛(𝑥) = 𝜆𝑛𝜑𝑛(𝑥). (8) 
 
Denoting by {𝜑𝑛(𝑥)} the complete set of solutions of Eq. 8, the following property holds 
 

 ∑𝜑𝑛(𝑥)𝜑𝑛
∗(𝑥′)

𝑛

= 𝛿(𝑥 − 𝑥′). (9) 

 
Substituting Eq. 9 in Eq. 7 one gets 
 

 [𝑧 − 𝐿(𝑥)]𝐺(𝑥, 𝑥′; 𝑧) = ∑𝜑𝑛(𝑥)𝜑𝑛
∗(𝑥′)

𝑛

, (10) 

 
from which, supposing all eigenvalues of operator [𝑧 − 𝐿(𝑥)] are different from zero, is obtained 
 

 𝐺(𝑥, 𝑥′; 𝑧) =∑
𝜑𝑛(𝑥)𝜑𝑛

∗(𝑥′)

𝜆 − 𝜆𝑛
𝑛

     𝑧 ≠ 𝜆𝑛, (11) 

 
where, for clarity, we set 𝑧 = 𝜆. We need to define 𝐺(𝑥, 𝑥′; 𝑧) at 𝑧 = 𝜆𝑛 . To do this we use the 
limiting procedure, forming a branch cut along certain part of the real axis (Beardon & Minda, 
2003) 
 

 𝐺(𝑥, 𝑥′; 𝜆) = lim
𝜀→0±

𝐺(𝑥, 𝑥′; 𝜆 ± 𝑖𝜀), (12) 
 
where 𝑧 = 𝜆 ± 𝑖𝜀. In such a way Eq. 11 becomes 
 

 𝐺(𝑥, 𝑥′; 𝜆) =∑
𝜑𝑛(𝑥)𝜑𝑛

∗(𝑥′)

𝜆 − 𝜆𝑛 ± 𝑖𝜀
𝑛

, (13) 

 
which holds whatever the value 𝜆𝑛 is. The GF of Eq. 13 is meromorphic with a finite number of 
poles, and represents the explicit form we will use in the continuation, with 𝜆 assuming the role 
of energy. For this reason, 𝐺(𝑥, 𝑥′; 𝐸) is called the GF in the energy (frequency) representation. 

Let us apply what has been obtained to Eq. 6. Denoting by ℋ = [−
ℏ2

2𝑚

𝑑2

𝑑𝑥2
+ ∆𝐺0

#(𝑥2 − 𝑎2)2] the 

Hamiltonian, is obtained 
 

 [𝐸 − ℋ]𝐺(𝑥, 𝑥′; 𝐸) = 𝛿(𝑥 − 𝑥′), (14) 
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whose solutions are 
 

 𝐺𝑛(𝑥, 𝑥
′; 𝐸) = ∑

𝜑𝑛(𝑥)𝜑𝑛
∗(𝑥′)

𝐸 − 𝐸𝑛 ± 𝑖𝜀
𝑛

. (15) 

 
The wavefunctions 𝜑𝑛(𝑥) and eigenvalues 𝐸𝑛 are obtained by applying the self-consistent field 
method (SCF). Eq. 15 suggests that proton tunneling can occur through a finite number of possible 
pathways, each with its energy. All these paths lead from the initial state, in which the proton is 
chemically bonded to the donor group D, to the final state, in which the hydrogen is chemically 
bonded to the acceptor group A. We denote by 𝐺𝐷−𝐻(𝑥, 𝑥

′; 𝐸𝐷−𝐻) the free GF of the initial state 
and by 𝐺𝐴−𝐻(𝑥, 𝑥

′; 𝐸𝐴−𝐻) that of the final state. These GFs are calculated using Eq. 15 and related 
by the Dyson equation 
 

 𝐺𝐴−𝐻(𝑥, 𝑥
′; 𝐸𝐴−𝐻) = 𝐺𝐷−𝐻(𝑥, 𝑥

′; 𝐸𝐷−𝐻) + 𝐺𝐷−𝐻(𝑥, 𝑥
′; 𝐸𝐷−𝐻)𝑈𝐺𝐴−𝐻(𝑥, 𝑥

′; 𝐸𝐴−𝐻), (16) 
 
where 𝑈 is the perturbation related to the tunneling process. Eq. 16 holds since the energy ∆𝐺0

# 
is small compared to the A-H and D-H bond energies. Using some simple algebra, from Eq. 16 one 
gets 
 

 𝑈 = [𝐺𝐷−𝐻(𝑥, 𝑥
′; 𝐸𝐷−𝐻)]

−1 − [𝐺𝐴−𝐻(𝑥, 𝑥
′; 𝐸𝐴−𝐻)]

−1. (17) 
 
The potential given by Eq. 17 allows calculating the explicit form of the GFs relating to all possible 
reaction pathways and the associated probabilities. Each path is formed by single steps 
represented by suitable molecular orbitals. It should be clarified that by pathway, we mean the 
steps that take place strictly within the classically forbidden region, i.e, within the potential 
barrier. We will apply the proposed method to two examples in the following section to clarify 
how it works. The first is related to a proton tunneling via an intramolecular hydrogen bond, and 
the second concerns a double proton tunneling via an intermolecular hydrogen bond. 

Proton Tunneling: How the Model Works 
 

Let us consider the proton tunneling via an intramolecular hydrogen bond occurring in a 
Fujicurin A molecule. The system to be studied is shown in Figure 2 
 

 
Figure 2. proton tunneling via intramolecular hydrogen bond in Fujicurin A molecule. 

The double well potential is supposed to be symmetric. 
 

A symmetrical double well was chosen even if the hydroxyl groups 1 and 2 are bonded to 
different molecule fragments. This approximation is legitimate as we investigate proton 
tunneling by limiting the region where the proton transfer between the donor and acceptor 
groups occurs. Furthermore, proton tunneling involves a rearrangement of the π-electrons of the 
six-atom ring closed by the intramolecular hydrogen bond, so it is reasonable to consider the 
molecular orbital energies of carbonyl 1 and hydroxyl 2 of the initial state equal to those of the 
carbonyl 2 and hydroxyl 1 of the final state. We now have to choose the orbitals that form the 
pathway from the initial state to the final one. Therefore, we must conjecture a reaction 
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mechanism consistent with the chemical-structural characteristics of the molecular region 
involved in the proton transfer. For example, the first step of the pathway is represented by an 
increase in the average length of the O(2)-H bond, which means assuming that the electrons of 
this bond is described by a parametrized molecular orbital. The parametrization is performed 
through a numerical parameter 𝜇 added to the bond distance 𝑑𝑂(2)−𝐻. This means using molecular 

orbital obtained in non-adiabatic fashion, where the Born-Oppenheimer approximation does not 
more hold. The computation of the parametrized molecular orbital can be done using MOLPRO 
quantum chemistry program package (Werner et al., 2011). Due to this distance increases, the 
proton is more affected by the interaction with the carbonyl’s oxygen 2. So, the second step is 
represented by an independent hydrogen atom, where the interactions with oxygens 1 and 2 
cancel each other. This leads to choosing the 1s orbital as the second reaction step. Finally, as a 
third step, we can assume that the hydrogen is chemically bonded to oxygen 1 by forming an H-
O(1) bond. This means choosing the molecular orbital in the ground state of the H-O(1) bond as 
the third step. The set that characterizes this reaction pathway (proton tunneling) is given by 
 

 𝑝𝑎𝑡ℎ 𝐼: {𝜑𝑂(2)−𝐻
(𝑝𝑎𝑟.  𝑜𝑟𝑏𝑖𝑡𝑎𝑙), 𝜑1𝑠, 𝜑𝑂(1)−𝐻}. (18) 

 
where the apex (𝑝𝑎𝑟.  𝑜𝑟𝑏𝑖𝑡𝑎𝑙) denotes the parametrized molecular orbital. A second possible 
pathway is obtained by assuming that the third step consists of a parametrized molecular orbital 

𝜑𝑂(1)−𝐻
(𝑝𝑎𝑟.  𝑜𝑟𝑏𝑖𝑡𝑎𝑙). The set of orbitals forming the reaction pathway then becomes 

 
 𝑝𝑎𝑡ℎ 𝐼𝐼: {𝜑𝑂(2)−𝐻

(𝑝𝑎𝑟.  𝑜𝑟𝑏𝑖𝑡𝑎𝑙), 𝜑1𝑠 , 𝜑𝑂(1)−𝐻
(𝑝𝑎𝑟.  𝑜𝑟𝑏𝑖𝑡𝑎𝑙)}. (19) 

 
A third path could be the one that involves the formation of independent hydrogen whose 

1s orbital is highly polarized along the direction of the hydrogen bond. This path, therefore, will 

be equal to pathway I but with the 𝜑1𝑠  orbital replaced with a polarized 𝜑𝐻
(𝑝𝑜𝑙.) Orbital (Fiedler 

et al., 2011). The latter can be obtained preliminarily as a weighted linear combination between 
the 1s orbital and one of the 2p orbitals (as a function of the directionality of the hydrogen bond). 
The obtained path is 
 

 𝑝𝑎𝑡ℎ 𝐼𝐼𝐼: {𝜑𝑂(1)−𝐻
(𝑝𝑎𝑟.  𝑜𝑟𝑏𝑖𝑡𝑎𝑙), 𝜑𝐻

(𝑝𝑜𝑙.), 𝜑𝑂(1)−𝐻}. (20) 
 

A further pathway is obtained by combining path II and path III, and so on. This clarifies 
the arbitrariness in constructing the possible reaction pathways, which must remain consistent 
with the chemical-structural characteristics of the atoms involved in the hydrogen bond. These 
pathways are characterized by their associated energy and GFs. As we will see, the latter carries 
the information on the probability that proton tunneling occurs along that given path. We specify 

that if the pathway’s energy is more significant than ∆𝐺0
#, it must be discarded as the proton 

transfer will not take place by tunneling but by thermal activation. We also point out that the 
goodness of the chosen path does not necessarily increase as the set orbitals increase. 
We now have to calculate the GF associated with each step of the chosen paths. To do this, we 
must first calculate the perturbation potential (or tunneling potential) using the Dyson equation. 

In this regard we note that the value of ∆𝐺0
# is 2.40 Kcal/mol (Tanaka et al., 2022), i.e., much 

lower than the energy of the O-H bond, which is greater than 400 Kcal/mol. This makes it possible 
to apply Dyson's equation to the case being investigated. Using Eq. 17, we get 
 

 𝑈 = [𝐺𝑂(1)−𝐻]
−1
− [𝐺𝑂(2)−𝐻]

−1
, (21) 

 
where the free propagators are 
 

 

{
 
 

 
 𝐺𝑂(1)−𝐻 =

𝜑𝑂(1)−𝐻𝜑𝑂(1)−𝐻
∗

𝐸 − 𝐸𝑂(1)−𝐻 + 𝑖𝜀

𝐺𝑂(2)−𝐻 =
𝜑𝑂(2)−𝐻𝜑𝑂(2)−𝐻

∗

𝐸 − 𝐸𝑂(2)−𝐻 + 𝑖𝜀

. (22) 
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We recall that the single molecular wave functions and the related energies are 
preliminarily calculated by the SCF method. Such information is already available in the literature 
for many organic molecules involved in proton tunneling via hydrogen bonding (Stuke et al., 
2020; Takaya et al., 2021). Substituting Eq. 22 in Eq. 21 and calculating the limit 𝜀 → 0, we obtain 

a real function of the energy 𝐸, which has the value ∆𝐺0
# as its maximum and the energies of the 

O(1)-H and O(2)-H bonds as a minimum (the latter in the example being considered are supposed 
to be equal). Let us consider the path I. The free propagators of the three steps forming the 
reaction path are 
 

 

{
 
 
 

 
 
 𝐺𝑂(2)−𝐻

(𝑝𝑎𝑟.  𝑜𝑟𝑏𝑖𝑡𝑎𝑙) =
𝜑𝑂(2)−𝐻

(𝑝𝑎𝑟.  𝑜𝑟𝑏𝑖𝑡𝑎𝑙)𝜑𝑂(2)−𝐻
(𝑝𝑎𝑟.  𝑜𝑟𝑏𝑖𝑡𝑎𝑙)∗

𝐸 − 𝐸𝑂(2)−𝐻
(𝑝𝑎𝑟.  𝑜𝑟𝑏𝑖𝑡𝑎𝑙) + 𝑖𝜀

𝐺𝐻 =
𝜑1𝑠𝜑1𝑠

∗

𝐸 − 𝐸1𝑠 + 𝑖𝜀

𝐺𝑂(1)−𝐻 =
𝜑𝑂(1)−𝐻𝜑𝑂(1)−𝐻

∗

𝐸 − 𝐸𝑂(1)−𝐻 + 𝑖𝜀

. (23) 

 
The full propagator 𝐺𝑝𝑎𝑡ℎ 𝐼  is the sum of the three free propagators of Eq. 23. We need to 

compute the GFs in the classically forbidden region; using Eq. 16 and some simple algebra, one 
gets 
 

 {

𝐺𝑂(2)−𝐻
(𝑡𝑢𝑛.) = 𝐺𝑂(2)−𝐻 − 𝑈

𝐺𝐻
(𝑡𝑢𝑛.) = 𝐺𝐻 − 𝑈

𝐺𝑂(1)−𝐻
(𝑡𝑢𝑛.) = 𝐺𝑂(1)−𝐻 − 𝑈

, (23) 

 

where 𝑈 is given by Eq. 21. As usual, the full 𝐺𝑝𝑎𝑡ℎ 𝐼
(𝑡𝑢𝑛.) is the sum of the three propagators of Eq. 

23. Let us now define the decay factor η (Onuchic et al., 1991) 
 

 𝜂𝑖 =
𝐺𝑖
(𝑡𝑢𝑛.)

𝐺0
, (24) 

 
where 𝑖 denotes the ith step of the path, and 𝐺0 is the GF of the first step not included in the 
classically forbidden region (in our case 𝐺𝑂(2)−𝐻). The meaning of decay coefficient derives from 

the fact that the wave function inside the barrier behaves like an evanescent wave (referring to 
Figure 1) and decays in the direction of the final state. The total decay coefficient associated to 
the pathway is the product of all 𝜂𝑖  coefficient, and its probability is given by 
 

 𝔓(𝑝𝑎𝑡ℎ) =∏𝜂𝑖

𝑛

𝑖

∙ (∏𝜂𝑖

𝑛

𝑖

)

∗

. (25) 

 
Eq. 25 must be used carefully as the GFs are generalized functions, and their product suffers from 
arbitrariness in the space of the Schwartz distributions (Nanni, 2022). Notably, GF can be written 
as 
 

 𝐺𝑛(𝑥, 𝑥
′; 𝐸) = lim

𝜀→0

𝜑𝑛(𝑥)𝜑𝑛
∗(𝑥′)

𝐸 − 𝐸𝑛 + 𝑖𝜀
= 𝑃. 𝑉. [

𝜑𝑛(𝑥)𝜑𝑛
∗(𝑥′)

𝐸 − 𝐸𝑛
] − 𝑖𝜋𝛿(𝐸 − 𝐸𝑛), (26) 

 
where 𝑃. 𝑉. is the Cauchy principal value and 𝛿 is the Dirac function. Both are Schwartz 
distribution and the product with other distribution must be performed using the Hörmander 
approach (Kumar & Sevilla, 2009). The term −𝑖𝜋𝛿(𝐸 − 𝐸𝑛) in Eq. 26 represents the dissipation 

of the wave function within the barrier: the greater the 𝐸𝑛 and the smaller the ∆𝐺0
#, the faster it 

is. Returning to the case being investigated, the probability associated to path I is 
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 𝔓(𝑝𝑎𝑡ℎ 𝐼) =
𝐺𝑂(2)−𝐻

(𝑡𝑢𝑛.)𝐺𝐻
(𝑡𝑢𝑛.)𝐺𝑂(1)−𝐻

(𝑡𝑢𝑛.)

(𝐺𝑂(2)−𝐻)
3 (

𝐺𝑂(2)−𝐻
(𝑡𝑢𝑛.)𝐺𝐻

(𝑡𝑢𝑛.)𝐺𝑂(1)−𝐻
(𝑡𝑢𝑛.)

(𝐺𝑂(2)−𝐻)
3 )

∗

. (27) 

 
The same procedure should be applied to the other paths. The larger 𝔓(𝑝𝑎𝑡ℎ) value 

indicates which mechanism is more likely for proton tunneling. Since we use a parametrized 
molecular orbital, the function 𝔓(𝑝𝑎𝑡ℎ 𝐼) also depends on 𝜇. This allows the parameter 𝜇 to be 

found by solving the equation (𝜕𝔓/𝜕𝜇) = 0. The 𝜇 value must range in the set (0, 𝑅# − 𝑑𝑂(2)−𝐻), 

where 𝑅# is the position of the barrier's peak along the reaction coordinate. If the 𝜇 value exceeds 
(𝑅# − 𝑑𝑂(2)−𝐻), then the considered path must be discarded. To compute the energy associated 

with the path I, we have to add the GFs of Eq. 23. Substituting Eq. 22 in Eq. 23, and with simple 
algebra, in the limit 𝜀 → 0, we get 
 

 

𝐺𝑝𝑎𝑡ℎ 𝐼
(𝑡𝑢𝑛.)

=
(𝐸 − 𝐸1𝑠)(𝐸 − 𝐸𝑂(1)−𝐻)𝜑𝑂(2)−𝐻

(𝑝𝑎𝑟.  𝑜𝑟𝑏𝑖𝑡𝑎𝑙)𝜑𝑂(2)−𝐻
(𝑝𝑎𝑟.  𝑜𝑟𝑏𝑖𝑡𝑎𝑙)∗

𝐸2(𝐸 − 𝐸𝑂(1)−𝐻 + 𝐸1𝑠 − 𝐸𝑂(2)−𝐻
(𝑝𝑎𝑟.  𝑜𝑟𝑏𝑖𝑡𝑎𝑙.))

+
(𝐸 − 𝐸𝑂(2)−𝐻

(𝑝𝑎𝑟.  𝑜𝑟𝑏𝑖𝑡𝑎𝑙))𝜑1𝑠𝜑1𝑠
∗

𝐸2(𝐸 − 𝐸𝑂(1)−𝐻 + 𝐸1𝑠 − 𝐸𝑂(2)−𝐻
(𝑝𝑎𝑟.  𝑜𝑟𝑏𝑖𝑡𝑎𝑙.))

+
(𝐸 − 𝐸1𝑠)(𝐸 − 𝐸𝑂(2)−𝐻

(𝑝𝑎𝑟.  𝑜𝑟𝑏𝑖𝑡𝑎𝑙))(𝐸 − 𝐸𝑂(1)−𝐻)𝜑𝑂(1)−𝐻𝜑𝑂(1)−𝐻
∗

𝐸2(𝐸 − 𝐸𝑂(1)−𝐻 + 𝐸1𝑠 − 𝐸𝑂(2)−𝐻
(𝑝𝑎𝑟.  𝑜𝑟𝑏𝑖𝑡𝑎𝑙.))

− −3𝑈. 

(28) 

 
The term 𝑈 is given by Eq. 21, and its explicit form is (at the limit 𝜀 → 0) 
 

 𝑈 =
(𝜑𝑂(2)−𝐻𝜑𝑂(2)−𝐻

∗)(𝐸 − 𝐸𝑂(1)−𝐻) − (𝜑𝑂(1)−𝐻𝜑𝑂(1)−𝐻
∗)(𝐸 − 𝐸𝑂(2)−𝐻)

(𝜑𝑂(2)−𝐻𝜑𝑂(2)−𝐻
∗)(𝜑𝑂(1)−𝐻𝜑𝑂(1)−𝐻

∗)
. (29) 

 
A closer look at Eq. 28 discloses that 𝐺𝑝𝑎𝑡ℎ 𝐼

(𝑡𝑢𝑛.) contains the electron density that characterizes 

proton transfer. It appears at the numerator and is a weighted linear combination of the electron 
densities associated with the single steps forming the reaction paths and those associated with 
the initial and final states of the proton transfer (whose contributions are given by the explicit 

form of 𝑈). Denoting by 𝜌(𝑡𝑢𝑛.)(𝑝𝑎𝑡ℎ 𝐼) the tunneling density, which, as usual, is given by 

[𝜑(𝑡𝑢𝑛.)
(𝑝𝑎𝑡ℎ 𝐼)

(𝜑(𝑡𝑢𝑛.)
(𝑝𝑎𝑡ℎ 𝐼)

)
∗
], and by 𝐻(𝑡𝑢𝑛.) the tunneling Hamiltonian, one gets the tunneling 

energies 𝐸(𝑡𝑢𝑛.)(𝑝𝑎𝑡ℎ 𝐼) as 
 

 𝐻(𝑡𝑢𝑛.)𝜑(𝑡𝑢𝑛.)(𝑝𝑎𝑡ℎ 𝐼) = 𝐸
(𝑡𝑢𝑛.)

(𝑝𝑎𝑡ℎ 𝐼)𝜑
(𝑡𝑢𝑛.)

(𝑝𝑎𝑡ℎ 𝐼)
. (30) 

 
As already stated, if 𝐸(𝑡𝑢𝑛.)(𝑝𝑎𝑡ℎ 𝐼) > ∆𝐺0

#, the chosen pathway is not a tunneling path but rather 

a path of thermal activation. 
The proton transfer of Figure 2 can also take place in the opposite direction to the one we 

have just considered. More precisely, the intramolecular proton transfer is in equilibrium. To 
evaluate the opposite tunneling with the same pathway, applying Eq. 27 by changing the 
denominator is sufficient. The latter will be, as mentioned above, the first propagator not involved 
in the classically forbidden region. Since for pathway I we have chosen the ground state of the 
O(1)-H bond as the final step, then as 𝐺0 we must choose the free propagator of the C-O(1) bond. 
Therefore, one obtains 
 

 

𝔓(𝑝𝑎𝑡ℎ 𝐼)(𝑏𝑎𝑐𝑘𝑓𝑜𝑟𝑤𝑎𝑟𝑑)

=
𝐺𝑂(2)−𝐻

(𝑡𝑢𝑛.)𝐺𝐻
(𝑡𝑢𝑛.)𝐺𝑂(1)−𝐻

(𝑡𝑢𝑛.)

(𝐺𝐶−𝑂(1))
3 (

𝐺𝑂(2)−𝐻
(𝑡𝑢𝑛.)𝐺𝐻

(𝑡𝑢𝑛.)𝐺𝑂(1)−𝐻
(𝑡𝑢𝑛.)

(𝐺𝐶−𝑂(1))
3 )

∗

. 
(31) 
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The energy corresponding to the back-forward tunneling pathway remains unchanged since we 
supposed (as an approximation) a symmetric double well. We conclude that the sum of 𝔓(𝑝𝑎𝑡ℎ 𝐼) 

and 𝔓(𝑝𝑎𝑡ℎ 𝐼)(𝑏𝑎𝑐𝑘𝑓𝑜𝑟𝑤𝑎𝑟𝑑) gives the function describing the probability of proton tunneling at 
equilibrium (for pathway I). The same must be computed for the other possible pathways. 

The proposed treatment is based on the approximation that the free propagator 
preceding the classically forbidden region is associated with the O(2)-H bond. In reality, proton 
tunneling involves rearranging the conjugated π-electrons, regardless of the tunneling direction. 
The dynamics by which this rearrangement occurs affect the tunneling probability. More 
precisely, the lower the rearrangement energy, the higher the likelihood that proton tunneling 
occurs, whatever the inferred reaction pathway. Therefore, the most rigorous approach is 
substituting the propagator at the denominator of Eq. 31 with free GF associated with the 
delocalized molecular orbital along the molecular ring that goes from oxygen O(1) to oxygen O(2). 

Let us now consider the case of two molecules connected by two concomitant hydrogen 
bonds. Specifically, we investigate the proton transfer dynamics in the Guanine-Cytosine base-
pair, which is of fundamental importance in studying DNA structure. The system is shown in 
Figure 3 
 

 
Figure 3. Double proton transfer in Guanine-Cytosine base-pair. 

 
As can be seen, the proton transfer activation along one of the two hydrogen bonds 

systematically involves the activation of the other. Therefore, the double proton transfer is a 
concerted reaction mechanism that affects the entire intermolecular loop in which the 𝜎 and 𝜋 
electrons rearrangement occurs. Since Guanine and Cytosine are different molecules, the wells of 
the donor and acceptor groups have different depths (asymmetric double wells). Let us apply the 
GF’s approach. Specifically, we calculate the possible pathways and related tunneling energies for 
each proton transfer, proceeding as done for the previous example. In this case, the GFs of the 
initial and final states must also consider the rearrangement of the π-electrons. This means using 
the LCAO-SCF method to compute the delocalized molecular orbitals along the two fragments of 
the loop of the intermolecular concerted reaction mechanism. We thus obtain the single 

probabilities of proton tunneling, which are denoted by 𝔓(1)(𝑝𝑎𝑡ℎ 𝐽) and 𝔓(2)(𝑝𝑎𝑡ℎ 𝐽′), where (1) 
and (2) denote the two hydrogen-bonds, whereas 𝐽 and 𝐽′ denote the inferred pathways. Through 
these probabilities, we can straightforwardly calculate those corresponding to the double proton 
transfer, which will be given by all the possible permutations of the products between the 

probabilities 𝔓(1)(𝑝𝑎𝑡ℎ 𝐽) and 𝔓(2)(𝑝𝑎𝑡ℎ 𝐽′) 
 

 𝔓(𝑑𝑜𝑢𝑏𝑙𝑒 𝑝𝑟𝑜𝑡𝑜𝑛 𝑡𝑢𝑛.)(𝐽, 𝐽′) = ℘(𝔓(1)(𝑝𝑎𝑡ℎ 𝐽), 𝔓(2)(𝑝𝑎𝑡ℎ 𝐽′)), (32) 
 
where ℘ denotes the permutation. For instance, supposed to have constructed three proton 
transfer paths via hydrogen bonds 1 and three via hydrogen bond 2. In that case, we have the 
following double proton transfer probabilities, each characterized by a given energy 
 

 {

𝔓(𝑑𝑜𝑢𝑏𝑙𝑒 𝑝𝑟𝑜𝑡𝑜𝑛 𝑡𝑢𝑛.)(𝐼, 𝐼′) ;  𝔓(𝑑𝑜𝑢𝑏𝑙𝑒 𝑝𝑟𝑜𝑡𝑜𝑛 𝑡𝑢𝑛.)(𝐼, 𝐼′′) ;  𝔓(𝑑𝑜𝑢𝑏𝑙𝑒 𝑝𝑟𝑜𝑡𝑜𝑛 𝑡𝑢𝑛.)(𝐼, 𝐼𝐼𝐼′)

𝔓(𝑑𝑜𝑢𝑏𝑙𝑒 𝑝𝑟𝑜𝑡𝑜𝑛 𝑡𝑢𝑛.)(𝐼𝐼, 𝐼′) ;  𝔓(𝑑𝑜𝑢𝑏𝑙𝑒 𝑝𝑟𝑜𝑡𝑜𝑛 𝑡𝑢𝑛.)(𝐼𝐼, 𝐼𝐼′) ;  𝔓(𝑑𝑜𝑢𝑏𝑙𝑒 𝑝𝑟𝑜𝑡𝑜𝑛 𝑡𝑢𝑛.)(𝐼𝐼, 𝐼𝐼𝐼′)

𝔓(𝑑𝑜𝑢𝑏𝑙𝑒 𝑝𝑟𝑜𝑡𝑜𝑛 𝑡𝑢𝑛.)(𝐼𝐼𝐼, 𝐼′) ;  𝔓(𝑑𝑜𝑢𝑏𝑙𝑒 𝑝𝑟𝑜𝑡𝑜𝑛 𝑡𝑢𝑛.)(𝐼𝐼𝐼, 𝐼𝐼′) ;  𝔓(𝑑𝑜𝑢𝑏𝑙𝑒 𝑝𝑟𝑜𝑡𝑜𝑛 𝑡𝑢𝑛.)(𝐼𝐼𝐼, 𝐼𝐼𝐼′)

. (33) 
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Eq. 33 holds if all proton transfer paths via hydrogen bond 1 differ from those that occur via 

hydrogen bond 2. The more considerable value obtained for 𝔓(𝑑𝑜𝑢𝑏𝑙𝑒 𝑝𝑟𝑜𝑡𝑜𝑛 𝑡𝑢𝑛.)(𝐽, 𝐽′) indicates 
the most probable mechanism for double proton tunneling. This approach is innovative 
compared to what is documented in the literature (Angiolari et al., 2023; Kumar & Sevilla, 2009; 
Soler-Polo et al., 2019). The proposed method can potentially be used to study multiple proton 
transfers in complex systems such as biological ones. 

Conclusion 
 

The GF method has been introduced in theoretical chemistry only recently, mainly for 
studying the electronic structure of periodic many-body systems, especially when the electrons 
are strongly correlated (Linderberg, 2004). This paper proves that this formalism can also be 
applied to study other physicochemical phenomena. Specifically, we construct a theoretical GF’s 
model to study proton tunneling in hydrogen-bonded systems. The approach consists of 
determining a priori a hypothetical tunneling mechanism, which takes place in the classically 
forbidden region of the potential barrier that separates the donor and acceptor groups, and 
calculating the probability of its occurrence and the associated energy. This mechanism is 
represented by a set of molecular and atomic orbitals, which are those involved in the breaking 
and forming of bonds along the direction of the hydrogen bond. This approach is innovative to 
those proposed in other works (Bountis, 1992; Fillaux et al., 2007; Jana & Ganguly, 2018; Marais 
et al., 2018; Pinotsi et al., 2016; Tikhonov, 2022) and has the advantage of using consolidated 
calculation programs, such as the LCAO-SCF, DFT, and MP2 ones. With this method it is possible 
to obtain the electron density within the classically forbidden region, and to predict how the 
strength of the hydrogen bond can facilitate or not the proton transfer. In particular, this method 
could be a useful and straightforward tool to study the dependence of the proton tunneling on the 
temperature and the environment. For example, increasing temperature allows access to excited 
vibrational levels of the donor group, making those higher energy reaction pathways more likely. 
The nature of the environment could instead modify the hydrogen bond strength, leading to 
reversals of the energies associated with the possible tunneling pathways (and, therefore, to a 
modification of the tunneling mechanism). 

Furthermore, the proposed model is effective in studying the dynamics of multiple proton 
transfer, especially the one whose mechanism involves the rearrangement of electrons of the 
molecule or a part of it. In this case, it is possible to investigate how a chosen pathway for one of 
the proton transfers influences the other, thus establishing the rule to determine the most 
probable concerted mechanism. This application also suggests that this method could be helpful 
in the theoretical study of the proton tunneling domino, which has recently aroused the interest 
of chemists (Schreiner et al., 2015). 
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