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ABSTRACT 
Surface waves often cause significant noise in seismic data, complicating the interpretation of subsurface 
structures. Traditional filtering methods, such as FK filtering, usually struggle with non-stationary noise 
and require extensive manual parameter tuning. This study explores the effectiveness of using K-means 
clustering, incorporating attributes such as amplitude, frequency, and phase to filter surface waves from 
seismic data. Synthetic seismic data were first generated to test the proposed method, ensuring its 
robustness before application to real field data. Attributes were extracted from each seismic trace, 
including instantaneous amplitude, frequency, and phase. These attributes were used as input 
parameters for the K-means clustering algorithm. The identified clusters corresponding to surface waves 
were then used to filter these waves from the seismic data. The K-Means clustering effectively 
differentiated surface waves from reflected waves in both synthetic and real seismic datasets. The 
method demonstrated that by including phase as an attribute, alongside amplitude and frequency, the 
accuracy of surface wave detection and filtering significantly improved. The synthetic data showed a 
clear separation of wave types, validating the method. When applied to real field data, the approach 
consistently removed surface waves, clarity of seismic reflections crucial for subsurface analysis. 
Keywords: 
Unsupervised machine learning; Seismic data; K-Means clustering; Filter surface waves  

 
Introduction 
 

Seismic data is crucial in various fields such as oil and gas exploration, geotechnical 
engineering, and seismology (Tsvankin, 2012). This data is obtained by transmitting seismic 
waves into the Earth and recording their responses (Tsvankin, 2012). Seismic waves are 
primarily composed of two main types, they are body waves and surface waves (Clayton & 
Ammon, 2003; Hall, 2004; Shearer, 2019; Wiens, 2003). The presence of surface waves in seismic 
data can disrupt data analysis and lead to misinterpretations (Moro, 2014; Socco et al., 2010; J. 
Xia, 2018). Surface waves are seismic waves that travel along the Earth's surface and are slower 
than body waves, which travel through the Earth's interior (Aki & Richards, 2022; Kramer, 2021; 
Lay & Wallace, 2015; Stein & Wysession, 2020). The presence of surface waves in seismic data can 
mask important subsurface features, such as faults and oil and gas reservoirs (Nanda, 2016; Simm 
& Bacon, 2022). This can lead to misinterpretations of the data, which can have serious 
consequences for infrastructure projects, such as earthquakes and volcanic eruptions. 
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To address the distorting effects of surface waves in seismic reflection data, a range of 
filtering methods have been developed. FK filtering, a cornerstone technique, leverages the 
distinct velocity-frequency relationship of surface waves by analyzing data in the frequency-
wavenumber domain, allowing for their separation and removal from body waves (J. Chen et al., 
2022; Y. Liu & Fomel, 2018; Z. Li & Zhou, 2017; Y. Wang et al., 2020). Notch filtering offers a targeted 
approach, applying a narrowband filter to eliminate specific frequency ranges dominated by 
surface waves while preserving body wave information crucial for interpretation (Gao et al., 2021; 
Q. Yang & Wu, 2018; Zhang et al., 2019). More recently, wavelet-based denoising has emerged as a 
powerful tool. By decomposing seismic data into different scales using wavelets, this technique 
effectively isolates surface waves based on their unique time-frequency characteristics, enabling 
their removal with greater precision than traditional methods (Sun et al., 2020; Xie et al., 2021). 
Curvelet-based denoising takes this concept a step further. Curvelets, specialized wavelets adept 
at representing curvilinear features like surface waves, are employed to decompose seismic data. 
This allows for targeted suppression of surface waves while safeguarding body wave information 
across different scales and orientations within the data (P. Liu et al., 2022). Additionally, phase-
matching filtering leverages the contrasting phase behavior of surface and body waves. By 
analyzing phase spectra, this technique identifies and eliminates surface waves, proving effective 
even for data with complex surface wave signatures (Y. Li & Feng, 2019; X. Wu et al., 2018; X. Yang 
et al., 2022). Although effective in many scenarios, the filtration methods described above have 
several limitations. Fixed parameters in traditional filters often do not adapt well to varying noise 
conditions or complex data structures. Manual parameter tuning in methods like FK filtering can 
be time-consuming and may not yield optimal results across different datasets. Filters may also 
struggle with non-stationary noise, where noise characteristics change over time or space. 
Additionally, complex subsurface structures can cause overlapping signals that traditional filters 
cannot easily separate. Traditional methods often struggle to adapt well to varying noise 
conditions or complex data structures, such as unseen data (J. Li et al., 2019). These limitations 
drive the development of filtering techniques that offer greater adaptability, automation, and 
effectiveness in handling complex and noisy seismic data. 

Recent advancements in seismic reflection methods have focused on developing robust 
surface wave filtering techniques, such as adaptive filtering methods and advanced signal 
processing algorithms, which have shown promise in mitigating the impact of surface waves on 
seismic data (Zhang et al., 2021). Machine learning techniques have also been increasingly 
applied to filter surface waves in seismic data. These approaches offer advantages in handling 
complex and noisy datasets where traditional methods might struggle (S. Liu et al., 2019; J. Wu et 
al., 2020; Zhang et al., 2021). The continuous development of these filtering techniques is vital for 
the seismic industry, ensuring more precise subsurface imaging and better resource management 
(Q. Chen & Sidney, 2018; Smith & Johnson, 2020). Enhanced filtering methods contribute to more 
accurate seismic interpretations, aiding in the successful exploration and exploitation of oil and 
gas resources, as well as other geological investigations (Khalaf et al., 2020; Y. Wang et al., 2021). 
By effectively addressing the challenges posed by surface waves, researchers and industry 
professionals can achieve more accurate interpretations, leading to better decision-making and 
reduced risk in various geoscientific applications (Khalaf et al., 2020; Y. Wang et al., 2021). 

In the "Unsupervised machine learning algorithm for detecting and outlining surface waves 
on seismic shot gathers" study, researchers propose a novel approach using an unsupervised K-
means clustering algorithm (K. Xia et al., 2018). The method utilizes local attributes of frequency, 
amplitude, and velocity derived from Gabor frequency and structure tensor analyses in K-means 
clustering to detect and outline surface waves on seismic shot gathers (K. Xia et al., 2018). The 
method utilizes local attributes of frequency, amplitude, and velocity, derived from Gabor 
frequency and structure tensor analyses, in K-means clustering to detect and outline surface 
waves on seismic shot gathers (K. Xia et al., 2018). The algorithm's performance is tested on 
multiple datasets, including synthetic datasets with random noise and missing traces, as well as 
a field dataset (K. Xia et al., 2018). The results demonstrate the algorithm's stability and 
effectiveness in accurately outlining surface waves, showcasing its potential for improving 
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seismic data processing and interpretation (K. Xia et al., 2018). Although the results 
demonstrated stability and effectiveness in accurately outlining surface waves, there are several 
controversies and gaps in the literature related to the methods of detecting and processing 
surface waves. One such issue is the reliance on the velocity parameter, which can reduce 
sensitivity and accuracy in certain situations (Jones et al., 1998). Specifically, using velocity as a 
primary distinguishing feature for surface waves may not always yield the most precise results. 
In seismic data, surface waves often exhibit complex behavior, and their characteristics can vary 
significantly depending on the geological context and the properties of the subsurface materials. 
Velocity alone may not sufficiently capture these variations, leading to potential misclassification 
or incomplete detection of surface waves. For instance, in heterogeneous or anisotropic media, 
where wave propagation is affected by varying subsurface conditions, relying solely on velocity 
can overlook subtle but crucial differences in wave characteristics. This limitation can result in 
reduced sensitivity, meaning some surface waves might not be detected, and reduced accuracy, 
meaning the detected waves may not be correctly outlined or classified. Therefore, incorporating 
additional parameters, such as phase, alongside velocity, can provide a more comprehensive and 
robust approach to detecting and delineating surface waves, enhancing the overall effectiveness 
of the analysis (X. Wang et al., 2022). 

Using phase as an attribute in K-means clustering can significantly enhance the detection and 
differentiation of surface waves from body waves in seismic data. Body waves and surface waves 
exhibit different phase characteristics due to their distinct propagation mechanisms, with body 
waves traveling through the Earth's interior and surface waves constrained to the Earth's surface 
(Shearer, 2019). Phase information is crucial for identifying and distinguishing between body 
waves and surface waves, as body waves experience phase changes influenced by the varying 
material properties of the Earth's internal layers, while surface waves display unique phase shifts 
due to their propagation along the free surface (Aki & Richards, 2022). Phase velocity analysis is 
fundamental for distinguishing surface waves from body waves, noting the characteristic phase 
velocities and dispersive nature of surface waves (Stein & Wysession, 2020). Surface waves exhibit 
larger amplitudes and longer periods than body waves, and phase information, coupled with 
amplitude and period data, provides a reliable means of distinguishing between them (Lay & 
Wallace, 2015). The importance of phase velocities in interpreting seismic data and differentiating 
wave types based on their propagation characteristics is well-documented (Dziewonski & 
Anderson, 1981). Dispersive effects in body waves can be analyzed through their phase 
characteristics to distinguish them from non-dispersive surface waves (Futterman, 1962). 
Theoretical models of seismic wave propagation show significant differences in the phase 
behavior of body waves compared to surface waves due to interactions with the Earth's structure 
and surface boundaries (Kennett, 2001). Phase measurements are instrumental in seismology for 
identifying wave types, allowing for their separation and analysis in seismic data (Udías, 1999). 

Phase as an attribute is typically measured using techniques such as Fourier Transform, 
which decomposes the seismic signal into its constituent frequencies and their respective phase 
information. For instance, the phase spectrum can be obtained by calculating the arctangent of 
the imaginary to real parts of the Fourier coefficients. This allows for a detailed analysis of phase 
variations across different seismic traces. In the practice of K-means clustering, phase attributes 
are extracted along with amplitude and frequency to create a multidimensional feature space. 
Each seismic trace is represented as a vector of these attributes. By doing so, the clustering 
algorithm can leverage the distinct phase characteristics of surface and body waves, improving 
the clustering accuracy. An example application of this method can be seen in a study by Lee et al. 
(2021), where phase attributes were used to successfully differentiate between surface waves 
and body waves in a complex geological setting. This approach provided a more robust clustering 
outcome compared to using amplitude and frequency alone. By incorporating phase, the 
clustering process becomes more sensitive to the subtle differences in wave propagation, leading 
to a clearer distinction between surface waves and body waves. This enhances the overall 
effectiveness of the seismic analysis, particularly in areas with complex subsurface structures. 
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Methods 
 

The workflow used in this research is illustrated in Figure 1, which comprehensively outlines 
the research methodology. This methodology begins with Data Generation and Preprocessing, 
including synthetic data generation, field data collection, and seismic data attributes extraction. 
The next step is K-Means Cluster Analysis, where the preprocessed data is clustered using the K-
means algorithm to identify specific patterns and characteristics. The final stage is Surface Wave 
Filtering, where the results from the cluster analysis are used to filter out surface waves. 

 
Figure 1. Research Workflow for Surface Wave Filtering using K-Means Clustering 

 
Data Generation and Preprocessing 

1. Synthetic Data Generation 

Synthetic seismic data were generated to simulate realistic subsurface conditions and to 

provide a controlled environment for testing the surface wave filter. The synthetic data included 

various seismic wave, such as surface waves, reflected waves, and random noise. This step 

ensured that the machine learning model could generalize well to different subsurface conditions. 

The synthetic data was generated by eq. (1): 

𝑆(𝑡) = ∑ 𝐴𝑖𝑒𝑥𝑝 (−
(𝑡 − 𝑡𝑖)2

2𝜎𝑖
2 ) + 𝑁(𝑡)

𝑖
 (1) 

where 𝐴𝑖  represents the amplitude of the 𝑖 − 𝑡ℎ reflection, 𝑡𝑖 is the arrival time of the 𝑖 − 𝑡ℎ 

reflection, 𝜎𝑖 is the standard deviation of the Gaussian function, which controls the spread of the 

reflection signal, and 𝑁(𝑡) is he noise component added to simulate real-world conditions (Aki & 

Richards, 2022; Shearer, 2019). The standard deviation 𝜎 plays a crucial role in determining the 

width of the reflection events. In this context, 𝜎 = 0.02 was chosen based on typical values 

observed in real seismic data, where the reflections have a certain spread that reflects the 

frequency content of the seismic waves. A smaller 𝜎 would result in sharper reflections, while a 

larger 𝜎 would produce broader, less distinct reflections. The value 𝜎 = 0.02 was selected to 

balance between realistic sharpness and computational stability (Dziewonski & Anderson, 1981). 

The noise 𝑁(𝑡) added to the synthetic signal is typically modeled as Gaussian noise with a certain 

standard deviation. The noise level is crucial for simulating real-world conditions where seismic 
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data is often contaminated with noise from various sources. The impact of the noise level on data 

quality is significant. Higher noise levels degrade the clarity of the reflection events, making it 

more challenging to distinguish between different wave types (Futterman, 1962). 

2. Field Data 

The field data serves the purpose of applying the designed filtering method or algorithm to 
real-world data. This allows for testing and validating the effectiveness of the filter under actual 
conditions. The data facilitates evaluating the filter’s performance in removing surface waves 
while preserving body waves, providing essential feedback to refine the algorithm based on 
results obtained from real-world environments. 

 
3. Seismic Data Attributes Extraction  

We extracted three main attributes from the seismic traces: amplitude, frequency, and phase. 

These attributes were calculated for each trace using the Hilbert transform. The Hilbert transform 

is a critical tool in signal processing, particularly in the analysis of seismic data. In the context of 

seismic data analysis, the Hilbert transform is instrumental in extracting instantaneous 

amplitude, phase, and frequency, which are essential attributes for identifying and differentiating 

seismic wave types. The instantaneous amplitude, also known as the envelope, helps in 

highlighting the strength of reflections, while the instantaneous phase provides detailed 

information on the timing and propagation characteristics of seismic waves. These attributes are 

used in various advanced processing techniques, including filtering, attribute extraction, and 

clustering (Margrave, 2002; Taner et al., 1979). The amplitude was derived as the envelope of the 

analytic signal, while the instantaneous frequency and phase were computed using eq. (2) 

through eq. (4): 

a. Amplitude Extraction 

𝐴(𝑡) = √𝑑(𝑡)2 + �̂�(𝑡)2 (2) 

where 𝑑(𝑡) is the original seismic trace and �̂�(𝑡) is its Hilbert transform, 

b. Frequency Extraction 

𝑓(𝑡) =
1

2𝜋

𝑑∅(𝑡)

𝑑𝑡
 (3) 

Where ∅(𝑡) is the instantaneous phase, 

c. Phase Extraction 

∅(𝑡) = tan−1 (
�̂�(𝑡)

𝑑(𝑡)
) (4) 

Where �̂�(𝑡) is the Hilbert transform of the trace 𝑑(𝑡),  

These attributes provided a comprehensive representation of the seismic signal's 

characteristics and were used as input for clustering analysis (Shearer, 2019). 

 

K-Means Cluster Analysis 

 
K-means clustering is an unsupervised machine learning algorithm used to partition a 

dataset into 𝑘 distinct, non-overlapping subsets or clusters. Each cluster is defined by its centroid, 
which is the mean of the data points assigned to it. The objective of K-means clustering is to 
minimize the within-cluster variance, ensuring that data points within a cluster are as similar as 
possible, while points from different clusters are as dissimilar as possible (Bishop, 2006; Jain, 
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2010). The 𝑘 value select by visually inspecting whether the surface waves are distinctly 
clustered. This method involves iterative testing of different 𝑘 values on synthetic seismic data, 
observing the clusters' ability to isolate surface waves effectively. Once a 𝑘 value demonstrates 
successful separation of surface waves, it is then applied to real field data to ensure consistency 
and effectiveness. This pragmatic approach ensures that the chosen 𝑘 value is tailored to the 
specific characteristics of the seismic data being analyzed, enhancing the practical utility of the 
clustering process for our objectives.  

The mathematical formulation of the K-means objective function is given by eq. (5) 

𝐽 = ∑ ∑ ‖𝑥𝑗 − 𝜇𝑖‖
2

𝑥𝑗𝜖𝑐𝑖

𝑘

𝑖=1
 (5) 

where:  𝐽 is the total within cluster variance, ‖𝑥 − 𝜇𝑖‖2 is the Euclidiean distance between a data 
point 𝑥 and the centroid 𝜇𝑖  of cluster 𝑐𝑖. 𝜇𝑖  is the mean of the point in cluster 𝑐𝑖. 

In the context of seismic data analysis, K-means clustering is utilized to classify seismic traces 

into clusters based on their attributes, such as amplitude, frequency, and phase. This allows for 

the differentiation between surface waves and body waves, enhancing the effectiveness of surface 

wave filtering and improving the clarity of seismic reflections. 

 

Surface Wave Filtering 

1. Surface Wave Identification 
The clusters identified as surface waves were determined based on their amplitude, 

frequency, and phase characteristics. These clusters were then used to filter out the surface waves 
from the seismic data. 

 
2. Filtering Process 

The filtering was achieved by setting the values corresponding to the surface wave clusters 
to zero, effectively removing these waves from the data. This process was iteratively adjusted to 
achieve optimal filtering results. 

  
3. Mathematical Representation 

The filtering process can be represented by eq. (6): 
 

𝐹𝑖𝑙𝑡𝑒𝑟𝑒𝑑 𝑑𝑎𝑡𝑎 (𝑡) = 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑑𝑎𝑡𝑎 (𝑡) − 𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑤𝑎𝑣𝑒 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 (𝑡) (6) 

 
Results and Discussions 
 
1. Synthetic Data 

The generated synthetic data represents a simple seismic shot gather. The seismic data 
consists only of reflections and surface waves. The reflections are the data to be retained as the 
seismic signal. The recorded reflections consist of two distinct velocities, namely 5000 m/s and 
7000 m/s. The first layer is at a depth of 200 meters, while the second layer is at a depth of 500 
meters. The created surface wave has a velocity of 1500 m/s. To enhance the effectiveness of K-
means clustering for surface wave filtering, a detailed analysis of the synthetic data is crucial. This 
includes examining the impact of varying depths and velocities on the reflections and surface 
waves. For instance, altering the depth of the first layer or the velocity of the surface wave could 
significantly influence the recorded seismic signals, thereby affecting the clustering and filtering 
process. Understanding these variations helps refine the synthetic model, ensuring more accurate 
clustering of surface waves and improving the application of the method on real seismic data. 
Such an analysis provides deeper insights into the relationship between the physical parameters 
and the seismic responses, thus enhancing the overall filtering technique. Figure 2 illustrates the 
results of the synthetic data created for this study. The figure displays three seismic traces, each 
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containing both surface waves and reflections, which are essential for identifying the presence 
and positions of these features. Each trace represents a segment of the seismic data, where the 
surface waves and reflections can be visually distinguished by their distinct characteristics. The 
surface waves, appearing as lower frequency components, are prominent due to their higher 
amplitude compared to the reflections. Conversely, the reflections, indicative of subsurface layer 
interfaces, exhibit higher frequencies but lower amplitudes. This clear visual differentiation 
between surface waves and reflections in the traces allows for a better understanding of the 
data's structure and the subsequent application of K-means clustering for effective filtering. This 
detailed representation aids in comprehending how the synthetic data mimics real seismic 
scenarios, enhancing the effectiveness of the clustering and filtering process. 

 

 
Figure 2. Synthetic shot gather data consisting of surface waves (5000 m/s and 7000 m/s) and 

reflected waves (1500 m/s) 

 

2. K-Means Clustering Analysis 

The K-Means clustering algorithm was employed to distinguish between surface waves and 

body waves in seismic data. The process began by normalizing the extracted attributes amplitude, 

frequency, and phase. These attributes were then used as input features for the K-Means 

algorithm. The optimal number of clusters was determined iteratively, starting with a two cluster 

and increasing up to five clusters. 

For each iteration, the clustering results were analyzed to identify distinct groups based on 

the attribute values. The goal was to segregate surface waves, which are characterized by low 

frequency, high amplitude, and specific phase patterns, from body waves. The clustering process 

effectively highlighted these differences, allowing for a clear separation of surface and body 

waves. The iterative approach ensured that the clustering was precise, with each increment in 

the number of clusters carefully evaluated to determine if it improved the separation. This 

method provided a robust framework for identifying and categorizing the seismic waveforms, 

which was essential for the subsequent filtering process. 
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Once the clusters were established, their effectiveness was verified by examining the seismic 

data to ensure that the surface waves were correctly identified. This verification was crucial for 

the reliability of the filtering process that followed. The outcome demonstrated that the K-Means 

clustering method could effectively differentiate between surface and body waves, setting the 

stage for effective surface wave filtering. 

This 3D clustering visualization illustrates the effectiveness of the K-Means algorithm in 

partitioning seismic data based on amplitude, frequency, and phase attributes. By systematically 

increasing the number of clusters from 2 to 5, the visualization helps to identify the optimal 

cluster count that best captures the inherent structure of the data. This iterative process is crucial 

for accurately distinguishing between surface waves, which generally exhibit lower frequency 

and higher amplitude, and body waves. Such clear separation enhances our ability to filter and 

analyze seismic signals more effectively, ensuring that surface waves are correctly identified and 

isolated from the body waves. The 3D visualization provides a comprehensive view of the 

clustering results, highlighting how the algorithm groups similar data points and facilitates a 

more precise interpretation of seismic waveforms. This method significantly contributes to the 

reliability and accuracy of the subsequent filtering process, as it ensures that the identified 

clusters truly represent the distinct types of seismic waves present in the data. 

The clustering results were visualized using synthetic seismic data, showcasing the 

application of the K-Means algorithm. By employing a 3D visualization approach, the seismic 

attributes of amplitude, frequency, and phase were plotted to demonstrate how the algorithm 

effectively groups the data into clusters. The iterative process, which varied the number of 

clusters from 1 to 5, provided insight into the optimal clustering solution. This visualization 

revealed distinct clusters corresponding to surface waves and body waves, enabling a clearer 

differentiation. The synthetic data served as a controlled environment to validate the clustering 

method's ability to separate seismic wave types, ultimately improving the reliability of the 

filtering process. The visual output thus underscores the algorithm's capacity to enhance seismic 

data analysis by accurately isolating surface waves from body waves. 

After identifying the clusters corresponding to surface waves using the K-Means algorithm, the 

next step is to filter out these surface waves from the seismic data. This process involves 

subtracting the data points identified as belonging to the surface wave clusters from the overall 

seismic data. By isolating and removing these surface wave components, the remaining data 

predominantly contains body waves, which are crucial for accurate seismic interpretation. The 

effectiveness of this filtering technique was validated using synthetic data, demonstrating a 

significant reduction in surface wave noise and enhancing the clarity of the seismic reflections. 

Figure 3 showcases the results of clustering. The left panel presents the 3D clustering 

visualization using attributes such as amplitude, frequency, and phase, while the right panel 

applies the clustering results to the seismic shot gather data. The optimal clustering outcome is 

observed with five clusters, as it clearly differentiates the surface waves, represented in yellow, 

from the body waves. This distinction indicates the efficacy of the clustering approach in 

identifying and separating surface waves within the seismic data, enhancing the overall clarity 

and quality of the dataset. 
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(a) 

  

(b) 

  

(c) 

 
 

(d) 
Figure 3. 3D visualization of K-means clustering (left) and application of K-means on synthetic data 

(right) for different values of k. Panels (a) to (d) correspond to k=2, k=3, k=4, and k=5, respectively. 

The visualizations demonstrate the clustering effectiveness and the ability to separate surface waves 

from body waves, with k=5 providing the most distinct and optimal clustering. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 4. Results of applying the K-means clustering algorithm with k=5 for surface wave filtering on 
synthetic data, where k=5 was determined to be the optimal number of clusters through visualization of 
the data, effectively demonstrating the separation of surface waves. Panels (a)-(e) show the progressive 
subtraction of data for clusters 1 through 5, respectively. Panel (f) overlays the result of cluster 5 
subtraction with the original seismic trace, clearly illustrating the effective filtering of surface waves, 
demonstrating the enhanced clarity of the seismic data. 

 
3. Surface Wave Filtering 

After identifying the clusters corresponding to surface waves using the K-Means algorithm, 

the next step is to filter out these surface waves from the seismic data. This process involves 

subtracting the data points identified as belonging to the surface wave clusters from the overall 

seismic data. By isolating and removing these surface wave components, the remaining data 

predominantly contains body waves, which are crucial for accurate seismic interpretation. The 

effectiveness of this filtering technique was validated using synthetic data, demonstrating a 

significant reduction in surface wave noise and enhancing the clarity of the seismic reflections. 

Results of applying the K-means clustering algorithm for surface wave filtering on synthetic data 
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are shown in figure 4. Furthermore, the synthetic data was meticulously designed to mimic real 

field data conditions, ensuring that the results are representative of actual seismic scenarios. As 

a result, this method can be confidently applied to real data, offering a reliable approach to 

improving seismic data quality by effectively distinguishing and filtering surface waves. This 

adaptability ensures that the technique is robust and practical for various seismic data sets, 

confirming its utility in real-world applications. By comparing the K-Means clustering approach 

to these traditional methods, we can highlight the unique advantages of machine learning 

techniques, such as their adaptability and automation. The K-Means clustering method provides 

a data-driven approach that can automatically adjust to varying conditions without extensive 

manual intervention, making it a promising alternative for seismic data filtering. 

 

 
 

(a) (b) 
 

Figure 5. (a) 3D Visualization of K-Means Clustering with k=5 applied to seismic data, highlighting distinct 

clusters based on amplitude, frequency, and phase attributes. This visualization aids in identifying surface 

waves and body waves. (b) Application of K-Means clustering on synthetic data, demonstrating the 

effectiveness of the clustering algorithm in differentiating between surface waves and reflections. 

 

4. Application on Real Field Data 

To validate the effectiveness of the filtering method, it was applied to real field data following 

the same steps used for synthetic data (figure 5 and 6). The process began with the acquisition of 

real field seismic data, including various traces and sampling intervals. The seismic data was 

recorded in 1998, containing a total of 71,284 traces. Each trace has 1,501 samples with a 

sampling interval of 2 milliseconds. The data includes no specific source or receiver coordinates, 

and depth and elevation information are all recorded as zero, which may indicate that this data 

was either not recorded or has not been processed to include these details. The alias filter 

frequency used is 207 Hz with a slope of 298. For this analysis, a subset of the data was selected, 

specifically traces numbered from 100 to 200. This subset was chosen to represent the data in a 

manageable size given the large number of traces in the full dataset. It is expected to provide a 

representative view of the seismic data characteristics contained within the SEGY file. 

Instantaneous attributes such as amplitude, frequency, and phase were extracted from each trace 

using the analytic signal from the Hilbert transform and unwrapped phase. The extraction 

process used specific algorithms to calculate these attributes, ensuring precise measurement of 

wave characteristics at each sampling point. These attributes were normalized and fed into the 

K-Means clustering algorithm, iterating from 1 to 5 clusters to determine the optimal number. 

For validation, the method compared the clustering and filtering results on real field data with 
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those from synthetic data. This comparison highlighted the method's robustness and consistency 

under varying conditions, demonstrating that the synthetic data accurately represented the 

seismic conditions of the field data. The clustering results, visualized in 3D, facilitated the 

separation of surface waves from body waves. Clusters identified as surface waves were filtered 

out from the seismic data, enhancing the interpretability and quality of seismic reflections. This 

method demonstrated significant improvements in reducing surface wave noise and clarifying 

subsurface features, proving its efficacy on real field data. Such comparisons provided additional 

insights into the method's performance across different datasets, confirming its utility in practical 

seismic data processing. 

 

 
(a) (b) 

 

Figure 6. (a) Seismic field data before applying the K-means clustering algorithm for surface wave filtering. 

The presence of surface waves and body waves complicates the interpretation. (b) Seismic field data after 

applying the K-means clustering algorithm. The surface waves have been effectively filtered out, resulting 

in a clearer representation of the body waves, which enhances the accuracy of seismic interpretation. 

Conclusion 
 

The conclusions of this research demonstrate that the surface wave filtering method using 
K-means clustering with attributes such as amplitude, frequency, and phase was effectively 
applied to both synthetic and real seismic data. The results indicate that surface waves can be 
successfully filtered out, enhancing the quality of the obtained seismic data. On synthetic data, 
this method clearly distinguished surface waves from reflected waves, confirming its capability 
to address noise caused by surface waves. Applying this method to real seismic data also yielded 
consistent results, with disruptive surface waves effectively removed, allowing for more accurate 
interpretation of important reflected waves essential for subsurface structure analysis. This 
research proves that incorporating a comprehensive set of attributes, including phase, in the K-
means clustering algorithm can improve the effectiveness of surface wave filtering, providing a 
more adaptive and accurate solution compared to traditional filtering methods. 
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