Antibacterial Activity and Potential Of Natural Textile Dyes From Sea Water Bacteria

Andang Syaifudin*  -  Department of Biology, Faculty of Science and Technology, UIN Walisongo Semarang, Indonesia
Sutrisno Sutrisno  -  Department of Biology Edecation, Faculty of Science and Technology, UIN Walisongo Semarang, Indonesia

(*) Corresponding Author

This research aims to determine the potential of bacterial isolates from Marina beach seawater to be used as natural textile dyes and to test their antibacterial ability. The media used for culturing bacteria is a zobel synthesis medium with a mixture of seawater. The results of the isolation and extraction of color pigments obtained a red color with a characteristic wavelength of 535 nm and has a variety of chemical content results. Pigment immersion trials using 3 types of fabric, namely cotton, primisima and dobby fabric. The results of immersion with ethanolic solvent obtained optimum results for 12 hours and with the addition of mordant (Fe.H2O4S.7H2O), the color of the fabric is strong enough to withstand washing with detergent and sunlight. From the results of the study, data showed that the dyed primisima fabric gave a reduction or inhibition of the growth of E. coli bacteria by 9% while the inhibition of S. aureus bacteria was 116%. The pigment has the potential to be used as a dye for batik cloth with the provisions of optimizing to find the right reinforcement or mordant. This study has implications for the discovery of red pigment-producing bacteria from the isolation of seawater at Marina Semarang beach.

Keywords: Antibacterial; Color resistance; GCMS; Marine bacteria; Natural dyes; Textile dyes.

  1. Ahmad, A.S.; Ahmad, W.Y.W.; Zakaria, Z.K.; Yusof, N. Z.(2012). Applications of Bacterial Pigments as Colorant. The Malaysian Perspective; Springer: New York, NY, USA, p. 77
  2. An, T. J., Shin, K. S., Paul, N. C., Kim, Y. G., Cha, S. W., Moon, Y., Yu, S. H., & Oh, S. K. (2016). Prevalence, Characterization, and Mycotoxin Production Ability of Fusarium Species on Korean Adlay (Coix lacrymal-jobi L.) Seeds. Toxins, 8(11), 1–11. https://doi.org/10.3390/toxins8110310
  3. Alihosseini, F.; Ju, K.; Lango, J.; Hammock, B.D.; Sun, G. (2008). Antibacterial Colorants: Characterization of Prodiginines and Their Applications on Textile Materials. Biotechnol. Prog. 24, 742–747.
  4. Apriyani, N. (2018). Industri Batik: Kandungan Limbah Cair dan Metode Pengolahannya. Media Ilmiah Teknik Lingkungan, 3(1), 21–29. https://doi.org/10.33084/mitl.v3i1.640
  5. Dufossé, L. (2016). Current and Potential Natural Pigments From Microorganisms (Bacteria, Yeasts, Fungi, Microalgae). In Handbook on Natural Pigments in Food and Beverages: Industrial Applications for Improving Food Color. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-100371-8.00016-6
  6. Dufossé, Laurent. (2018). Microbial pigments from bacteria, yeasts, fungi, and microalgae for the food and feed industries. In Natural and Artifiial Flavoring Agents and Food Dyes: Handbook of Food Bioengineering (Vol. 7). Elsevier Inc. https://doi.org/10.1016/C2016-0-00380-7
  7. Forster, A.L., Bitter, J.L., Rosenthal, S., Brooks, S., Watson, S.S. (2017). Photofading incotton fibers dyed using red, yellow, and blue direct dyes during examinationwith microspectrophotometry (MSP). Forensic Chemistry 5, 72–78.
  8. Enrico. (2019). Dampak Limbah Cair Industri Tekstil Terhadap Lingkungan dan Aplikasi Tehnik Eco Printing sebagai Usaha Mengurangi Limbah. Moda, 1(1), 5–13.
  9. Gupta, E., Gupta, C., Garg, A. P., Prakash, D., Goyal, S., & Gupta, S. (2011). Microbes As Poteetial Source of Biocolours 1*. Pharmacologyonline, 2, 1309–1318.
  10. Gusmiaty, M Restu, A., & Payangan, R. Y. (2019). Production of IAA (Indole Acetic Acid) of the rhizosphere fungus in the Suren community forest stand. IOP Conference Series: Earth and Environmental Science, 343(1). https://doi.org/10.1088/1755-1315/343/1/012058
  11. Ibrahim D, Nazari TF, Kassim J, Lim SH. (2014). Prodigiosin-an antibacterial red pigment produced by Serratia marcescens IBRL USM 84 associated with a marine sponge Xestospongia testudinaria. J ApplPharm Sci. 4(10):1–6.
  12. Kanelli Lee, J. S., Kim, Y. S., Park, S., Kim, J., Kang, S. J., Lee, M. H., Ryu, S., Choi, J. M., Oh, T. K., & Yoon, J. H. (2011). Exceptional production of both prodigiosin and cycloprodigiosin as major metabolic constituents by a novel marine bacterium, Zooshikella rubidus S1-1. Applied and Environmental Microbiology, 77(14), 4967–4973. https://doi.org/10.1128/AEM.01986-10
  13. Kusumawati, N., Rahmadyanti, E., & Sianita, M. M. (2021). Batik became two sides of blade for the sustainable development in Indonesia. In Green Chemistry and Water Remediation: Research and Applications. Elsevier Inc. https://doi.org/10.1016/b978-0-12-817742-6.00003-7
  14. Manzoor, J., & Sharma, M. (2019a). Impact of textile dyes on human health and environment. Impact of Textile Dyes on Public Health and the Environment, January, 162–169. https://doi.org/10.4018/978-1-7998-0311-9.ch008
  15. Manzoor, J., & Sharma, M. (2019b). Impact of Textile Dyes on Human Health and Environment. 162–169. https://doi.org/10.4018/978-1-7998-0311-9.ch008
  16. Morales-Oyervides, L, Oliveira, J., Sousa-Gallagher, M., Méndez-Zavala, A, Mon tañez, J.C. (2017). Assessment of the dyeing properties of the pigmentsproduced byTalaromyces spp. Journal of Fungi 3 (3), 38–46.
  17. Mukimin, A., Vistanty, H., Zen, N., Purwanto, A., & Wicaksono, K. A. (2018). Performance of bioequalization-electrocatalytic integrated method for pollutants removal of hand-drawn batik wastewater. Journal of Water Process Engineering, 21(July 2017), 77–83. https://doi.org/10.1016/j.jwpe.2017.12.004
  18. Naimah, S., Ardhanie, S. A., Jati, B. N., Aidha, N. N., & Arianita, A. C. (2014). Degradasi Zat Warna Pada Limbah Cair Industri Tekstil Dengan Metode Fotokatalitik Menggunakan Nanokomposit Tio 2 – Zeolit ( Color Degradation In Textile Industrial Wastewater With. Jurnal Kimia Kemasan, 36, 225–236.
  19. Prajoko, S. (2018). Water Feasibility Study of Bengawan Solo River for Irrigation: The Need for Technology to Solve Rice Field Pollution in Sragen, Indonesia. International Journal of Applied Biology, 2(1), 12–21. https://doi.org/10.20956/ijab.v2i1.3971
  20. Pujilestari, T. (2016). Review: Sumber dan Pemanfaatan Zat Warna Alam untuk Keperluan Industri. Dinamika Kerajinan Dan Batik: Majalah Ilmiah, 32(2), 93. https://doi.org/10.22322/dkb.v32i2.1365
  21. Ragunathan V, Pandurangan J, Ramakrishnan T. 2019. Gas Chromatography-Mass spectrometry Analysis of Methanol Extracts from Marine Red Seaweed Gracilaria corticata. Pharmacog J. 11(3):547-54.
  22. Saha, M. L., Islam, K. N., Akter, T., Rahman, I. A., Islam, T., & Khan, T. (2019). Isolation and identification of amylolytic bacteria from garbage and garden soil. Bangladesh Journal of Botany. https://doi.org/10.3329/BJB.V48I3.47915
  23. Samanta, A.K., Konar, A. (2011). Dyeing of textiles with natural dyes, Natural Dyes, Dr. Emriye Akcakoca Kumbasar (Ed.), InTech, 29:49.
  24. Sastrawidana, I., Maryam, S., & Sudiana, I. (2015). Pigmen Merah Dari Jamur Yang Diisolasi Dari Tanah Tempat Pembuangan Limbah Susu. Jurnal Kimia, 9(1), 7–12.
  25. Setiyono, E., Adhiwibawa, M. A. S., Indrawati, R., Prihastyanti, M. N. U., Shioi, Y., & Brotosudarmo, T. H. P. (2020). An Indonesian Marine Bacterium, Pseudoalteromonas rubra, Produces Antimicrobial Prodiginine Pigments. ACS Omega, 5(9), 4626–4635. https://doi.org/10.1021/acsomega.9b04322
  26. Singh, R., Jain, A., Panwar, S., Gupta, D., Khare, S. 2005. Antimicrobial activity of some natural dyes. Dye. Pigment. 66, 99–102.
  27. Silva, R.K., Subha, D.B., Ghosh, A.R., Babu, S. 2012. Characterization and enhanced production of prodigiosin from the spoiled coconut. Appl. Biochem. Biotechnol. 166: 187-196.
  28. Song MJ, Bae J, Lee DS, Kim CH, Kim JS, Kim SW, et al. (2006). Purification and characterization of prodigiosin produced by integrated bioreactor from Serratia sp. KH-95. J Biosci Bioeng. 101(2):157–61.
  29. Srilekha, V., Krishna, G., Srinivas, V. S., & Charya, M. A. S. (2017). Antimicrobial Evaluation of Bioactive Pigment from Salinicoccus sp isolated from Nellore sea coast. 13(3), 211–217.
  30. Suryawanshi RK, Patil CD, Koli SH, Hallsworth JE, Patil S V. (2017). Antimicrobial activity of prodigiosin is attributable to plasma-membrane damage. Nat Prod Res. 31(5):572–7
  31. Tescari, M., Visca, P., Frangipani, E., Bartoli, F., Rainer, L., & Caneva, G. (2018). Celebrating centuries: Pink-pigmented bacteria from rosy patinas in the House of Bicentenary (Herculaneum, Italy). Journal of Cultural Heritage, 34(2017), 43–52. https://doi.org/10.1016/j.culher.2018.02.015
  32. Venil, C. K., Dufossé, L., Velmurugan, P., Malathi, M., & Lakshmanaperumalsamy, P. (2021). Extraction and Application of Pigment from Serratia marcescens SB08, an Insect Enteric Gut Bacterium, for Textile Dyeing. Textiles, 1(1), 21–36. https://doi.org/10.3390/textiles1010003
  33. Zulfikar, M. F., Kusdiantini, E., & Nurjannah, S. (2017). Identifikasi Jenis Pigmen Dan Uji Potensi Antioksidan Ekstrak Pigmen Bakteri Rhodococcus Sp Hasil Isolasi Dari Sedimen Sumber Air Panas Gedong Songo. Jurnal Biologi, 6(4)(4), 106–114.

Open Access Copyright (c) 2022 Al-Hayat: Journal of Biology and Applied Biology
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
apps