Callus Induction from Stem Explants of Binahong (Anredera cordifolia (Ten.) Steenis) with the Addition of Picloram and BAP

Siska Na'ilil Aulia*    -  State University of Semarang, Indonesia
Noor Aini Habibah    -  State University of Semarang, Indonesia

(*) Corresponding Author

Supp. File(s): Research Instrument

The many benefits of medicinal plants require development techniques that aim to produce high and diverse secondary metabolite contents. The purpose of this study was to analyze the effect of the concentration of picloram and BAP and determine the optimal concentration in inducing binahong callus. The research design used was a completely randomized design with two factors, namely the combination of picloram and BAP (0, 1, 2, and 3 ppm). The incubation process of binahong callus was carried out for 40 days after planting (DAP). The observed callus growth indicators consisted of days to callus formation (days), percentage of callus explants (%), callus morphology (texture and color), and callus diameter. Data on days to callus formation and frequency of callus explants were analyzed using the Kruskal-Wallis test and further tested by Dunn if there was a significant effect. The results showed that picloram significantly affected the parameters of days to callus formation and the percentage of callus explants, while BAP significantly affected the parameters of days to callus formation and did not significantly affect the percentage of callus explants parameter. At concentrations of 1 ppm, 2 ppm, and 3 ppm, picloram had a significant effect on both the days to callus formation and the percentage of callus explants parameters. BAP at concentrations of 1 ppm, 2 ppm, and 3 ppm only had a significant effect on the parameter of days to callus formation appearance and was not significant in the percentage of callus explants parameter. The interaction between BAP and picloram had a significant effect on the parameters of days to callus formation and the percentage of callus explants. The resulting callus has a compact texture with callus colors ranging from white, and green, to brown. The most optimal concentration in all indicators is 0 ppm BAP + 1 ppm picloram with days to callus formation of 6 DAP, 100% explants form callus, overall callus is white with compact texture, and has a very high callus growth.

Supplement Files

Keywords: callus; binahong; picloram; BAP

  1. Aghaali, Z., Hoshino, Y., Monfared, S. R., & Moeini, A. (2019). Regulation of Dedifferentiation and Differentiation in Different Explants of Papaver rhoeas L. by One-Step Culture. Scientia Horticulturae, 246, 366–370.
  2. Astuti, S. M., Sakinah A.M, M., Andayani B.M, R., & Risch, A. (2011). Determination of Saponin Compound from Anredera cordifolia (Ten) Steenis Plant (Binahong) to Potential Treatment for Several Diseases. Journal of Agricultural Science, 3(4), 224–232.
  3. Audus, L. J. (1963). Plant Growth Substance. New York: CRC Press, Inc.
  4. Britannica, T. Editors of Encyclopaedia (2021). Flavonoid. Encyclopedia Britannica. https://www.britannica.com/science/flavonoid diakses pada 29 Januari 2023 00:01.
  5. Cabañas-García, E., Areche, C., Gómez-Aguirre, Y. A., Borquez, J., Muñoz, R., Cruz-Sosa, F., & Balch, E. P. M. (2021). Biomass Production and Secondary Metabolite Identification in Callus Cultures of Coryphantha macromeris (Engelm.) Britton & Rose (Cactaceae), A Traditional Medicinal Plant. South African Journal of Botany, 137, 1–9.
  6. Chen, C. M. (1989). Cytokinin-Modulated Macromolecular Synthesis and Gene Expression. In S Kung, CJ Arntzen (Eds), Plant Biotechnology (pp. 245-256). London: Butterworths.
  7. D’Agostino, I. B., & Kieber, J. J. (1999). Molecular Mechanisms of Cytokinin Action. Current Opinion in Plant Biology, 2(5), 359–364. https://doi.org/10.1016/S1369-5266(99)00005-9.
  8. Damanik, I. T. S., Rosmayati, & Siregar, L. A. M. (2017). Effect of Explant Type and Growth Regulator Composition on Callus Induction in Binahong Plants (Anredera cordifolia (Ten.) Steenis). Jurnal Agroekoteknologi FP USU., 5(3), 532–536.
  9. Dodd, B. (1993). Plant Tissue Culture for Horticulture. Schol of Life Science. Queensland University of Technology.
  10. Doods, J. H. & Roberts, L. W. (1995). Experiments in Plant Tissue Culture: Melbourne: Press Syndicate of Universe of Cambridge.
  11. Ezzat, G. (2017). Influence of 2,4-D and Picloram on In Vitro Callus Induction from Verbena bipinnatifida Nutt. and Evaluation of In Vivo Anti-Inflammatory Activity of Callus Extract. Australian Journal of Basic and Applied Sciences, 11, 146–150.
  12. Gantait, S., & Mahanta, M. (2021). Picloram-Induced Enhanced Callus-Mediated Regeneration, Acclimatization, and Genetic Clonality Assessment of Gerbera. Journal of Genetic Engineering and Biotechnology, 19(1), 1–8.
  13. Indah, P. N. & Dini, E. (2013). Nyamplung (Calophyllum inophyllum Lin) Leaf Callus Induction at Several Combinations of 6-Benzylaminopurine (BAP) and 2,4-Dichlorophenoxyacetic Acid (2,4-D) Concentrations. Jurnal Sains dan Seni POMITS, 2(1), 2337-2343.
  14. Khosroushahi, A. Y., Naderi-Manesh, H., & Simonsen, H. T. (2011). Effect of Antioxidants and Carbohydrates in Callus Cultures of Taxus brevifolia: Evaluation of Browning, Callus Growth, Total Phenolics and Paclitaxel Production. BioImpacts, 1(1), 37–45.
  15. Kiong, A. L. P., Nee, T. C., & Hussein, S. (2007). Callus Induction from Leaf Explants of Ficus deltoidea Jack. International Journal of Agricultural Research, 2(5), 468–475.
  16. Kiong, A. L. P., Yeo, S. T., Gansau, J. A., & Hussein, S. (2008). Induction and Multiplication of Callus from Endosperm of Cycas revoluta. African Journal of Biotechnology, 7(23), 4279–4284.
  17. Mahadi, I., Wan, S., Yeni, S. (2016). Callus Induction of Calamansi (Citrus microcarpa) Using 2,4-D and BAP Hormones by in vitro Methods. Jurnal Ilmu Pertanian Indonesia, 21(2), 84–89.
  18. Manuhara, Y. S. W. (2001). Regeneration of Mustard Plants (Brassica juncea L. var Morakot) Through Tissue Culture Techniques. Jurnal MIPA, 6(2), 127-130.
  19. Marthani, Q. K., Anggraito, Y. U., & Rahayu, E. S. (2016). Calogenesis of Koro Benguk (Mucuna puriens L.) Half-Seed Explants In Vitro Using BAP and NAA. Life Science, 5(1), 72–78
  20. Manoi, F. & Balitro (2009). Binahong (Anredera cordifolia) Sebagai Obat. Bogor: Pusat Penelitian dan Pengembangan Perkebunan.
  21. Merthaningsih, N. P., Yuswanti, H., & Astiningsih, A. A. M. (2018). Callus Induction in Phalaenopsis Pollen Culture Using 2,4-Dichlorophenoxyacetic Acid. Agrotrop, 8(1), 47–55.
  22. Rahayu, T., & Mardini, U. (2015). The Response of Node and Leaf Explant of Binahong (Anredera cordifolia L.) on MS Media with Variation of BAP Concentration. Proceeding Biology Education Conference: Biology, Science, Environmental, and Learning, 12(1), 657–661.
  23. Slater, A., N. Scott, & M. Fowler. (2003). Plant Biotechnology: The Genetic Manipulation of Plants. Oxford: Oxford University Press.
  24. Stafford, A., & G. Warren. (1991). Plant Cell and Tissue Culture. Milton Keynes: Open University Press.
  25. Sugiyarto, L., & Kuswadi, P. C. (2014). Effect of 2,4-Dichlorophenoxyacetate (2,4-D) and Benzyl Aminopurin (BAP) on Binahong (Anredera cordifolia L.) Leaf Callus Growth and Total Flavonoid Content Analysis. Jurnal Penelitian Saintek, 19(1), 56–60.
  26. Sukandar, E. Y., Sigit, J. I., & Adiwibowo, L. F. (2013). Study of Kidney Repair Mechanisms of Corn Silk (Zea mays L. Hair)-Binahong (Anredera cordifolia (Ten.) Steenis) Leaves Combination in Rat Model of Kidney Failure. International Journal of Pharmacology, 9(1), 12–23.
  27. Taiz L. & Zeiger, E. (2010). Plant Physiology 5th Edition. Sunderland: Sinauer Associates Inc.
  28. Wang, L., & Ruan, Y. L. (2013). Regulation of Cell Division and Expansion by Sugar and Auxin Signaling. Frontiers in Plant Science, 4(163), 1–9.
  29. Wardani, D. K. (2020). Induction of Patchouli Plant Callus (Pogostemon Cablin Benth) by Giving Concentration of Auxin Type 2,4-D (Dichlorophenoxyacetic Acid) and Picloram. Jurnal Indonesia Sosial Sains, 1(5), 402–414.
  30. Wattimena, G. A. (1991). Zat Pengatur Tumbuh. Bogor: PAU Bioteknologi IPB.
  31. World Health Organization, Regional Office for South-East Asia. (2020). Traditional Medicine in the WHO South-East Asia Region; Review of Progress 2014-2019. New Delhi: SEARO Publications.

Open Access Copyright (c) 2024 Al-Hayat: Journal of Biology and Applied Biology
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
apps