Authentication of Wax Apple (Syzygium samarangense (Blume) Merr. & L.M Perry) Delima and Citra Cultivars by Morphological and Molecular Approach

Arnia Sari Mukaromah*  -  Department of Biology, Faculty of Science and Technology, Universitas Islam Negeri Walisongo Semarang, Indonesia
Malia Ulfah  -  Department of Biology, Faculty of Science and Technology, Universitas Islam Negeri Walisongo Semarang, Indonesia
Annisa Nur Rachmah  -  Department of Biology, Faculty of Science and Technology, Universitas Islam Negeri Walisongo Semarang, Indonesia
Muhammad Ramdhani Arfan  -  Department of Biology, Faculty of Science and Technology, Universitas Islam Negeri Walisongo Semarang, Indonesia
Niken Kusumarini  -  Department of Biology, Faculty of Science and Technology, Universitas Islam Negeri Walisongo Semarang
Asri Febriana  -  Department of Biology, Faculty of Science and Technology, Universitas Islam Negeri Walisongo Semarang, Indonesia

(*) Corresponding Author

Wax apple Delima and Citra Cultivars are two superior non-climacteric tropical fruit commodities from Demak Regency which have similar morphological characters but have different fruit characteristics. Identification wax apple cultivars from Demak regency using DNA barcoding approach has not been researched yet.  The aims of this research are to analyze the morphological similarities of wax apple between Delima and Citra cultivars and to identify genetic variations of wax apple Delima and Citra using trnL-trnF intergenic spacer for molecularly authentication. The results shown that there were no differences in the environmental parameters of the wax apple two cultivated area in Demak Regency. According to the morphological approach, the Delima and Citra cultivars in Demak Regency were grouped separately into Delima and Citra clusters with a similarity index of 61.5% (Citra cultivars) and 60.5% (Delima cultivars) and separated based on the origin of their cultivation area. Genetic variations between wax apple Delima and Citra in Demak Regency consisted of deletions (9delA & 17delA) and conserved P6 loop in all compared cultivars. The possibility of heteroplasmy R (A,G) found at 73 nucleotide number in Delima Betokan cultivar and Citra cultivars (Betokan and Jungpasir). Meanwhile, Delima Jungpasir cultivar is K (G,T). There were P8 stem-loops with different lengths between Delima cultivars (Betokan and Jungpasir) and the same length in Citra cultivars (Betokan and Jungpasir). Therefore, the trnL-trnF intergenic spacer has not been thoroughly used in wax apple Delima and Citra authentication due to the presence of a secondary structure which causes the loss of the electropherogram signal so that the nucleotide sequence cannot be read.

Keywords: Keywords: Citra, Delima, DNA barcoding, trnL-trnF, wax apple

  1. Applequist, W. L., & Wallace, R. S. (2002). Deletions in the plastid trnT-trnL intergenic spacer define clades within Cactaceae subfamily Cactoideae. Plant Systematics and Evolution, 231, 153–162. https://doi.org/10.1007/s006060200017
  2. DeSalle, R., & Goldstein, P. (2019). Review and Interpretation of Trends in DNA Barcoding. Frontiers in Ecology and Evolution, 7, 1–11. https://doi.org/10.3389/fevo.2019.00302
  3. Fazekasova, D. (2021). Evaluation of Soil Quality Parameters Development in Terms of Sustainable Land Use. In S. Curkovic (Ed.), Sustainable Development – Authoritative and Leading Edge Content for Environmental Management bring (pp. 435–457). https://doi.org/http://dx.doi.org/10.5772/48686
  4. Flickinger, J. A., Jestrow, B., Prieto, R. O., Santiago-valentín, E., Sustache-sustache, J., Jiménez-rodríguez, F., & Campbell, K. C. S. E. (2020). A phylogenetic survey of Myrtaceae in the Greater Antilles with nomenclatural changes for some endemic species. Taxon, 69(3), 448–480. https://doi.org/10.1002/tax.12263
  5. Hall, T. (2011). BioEdit: An important software for molecular biology. GERF Bulletin of Biosciences, 2(June), 60–61.
  6. Hoang, N. V., Furtado, A., McQualter, R. B., & Henry, R. J. (2015). Next generation sequencing of total DNA from sugarcane provides no evidence for chloroplast heteroplasmy. New Negatives in Plant Science, 1–2, 33–45. https://doi.org/10.1016/j.neps.2015.10.001
  7. Kishor, R., & Sharma, G. J. (2018). The use of the hypervariable P8 region of trnL (UAA) intron for identification of orchid species: Evidence from restriction site polymorphism analysis. PLoS ONE, 13(5). https://doi.org/10.1371/journal.pone.0196680
  8. Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547–1549. https://doi.org/10.1093/molbev/msy096
  9. Mukaromah, A. S. (2020). Wax Apple ( Syzygium samarangense ( Blume ) Merr . & L . M . Perry ): A Comprehensive Review in Phytochemical and Physiological Perspectives. Al-Hayat: Journal of Biology and Applied Biology, 3(1), 40–58. Retrieved from https://doi.org/10.21580/ah.v3i1.6070
  10. Nguyen, K.-B., Tran, G.-B., & Van, H. (2020). Comparison of five wax apples (Syzygium samarangense) from Dong Thap Province, Vietnam based on morphological and molecular data. Banat’s Journal of Biotechnology, 11(21), 50–57.
  11. Shearman, J. R., Sonthirod, C., Naktang, C., Sangsrakru, D., Yoocha, T., Chatbanyong, R., … Pootakham, W. (2020). Assembly of the durian chloroplast genome using long PacBio reads. Scientific Reports, 10(1), 1–8. https://doi.org/10.1038/s41598-020-73549-4
  12. Taberlet, P., Coissac, E., Pompanon, F., Gielly, L., Miquel, C., Valentini, A., … Willerslev, E. (2007). Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding. Nucleic Acids Research, 35(3). https://doi.org/10.1093/nar/gkl938
  13. Taberlet, P., Gielly, L., Pautou, G., & Bouvet, J. (1991). Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Molecular Biology, 17(5), 1105–1109. https://doi.org/10.1007/BF00037152
  14. Ubaidillah, R., & Sutrisno, H. (2009). Pengantar Biosistematika: Teori dan Praktik. Bogor: Pusat Penelitian Biologi LIPI.
  15. Vere, N. De, Rich, T. C. G., Trinder, S. A., & Long, C. (2015). Dna barcoding for plants. In Jacqueline Batley (Ed.), Plant Genotyping: Methods and Protocols, Methods in Molecular Biology (Vol. 1245, pp. 101–118). https://doi.org/10.1007/978-1-4939-1966-6_8
  16. Weaver, A. R., Kissel, D. E., Chen, F., West, L. T., Adkins, W., Rickman, D., & Luvall, J. C. (2004). Mapping Soil pH Buffering Capacity of Selected Fields in the Coastal Plain. Soil Science Society of America Journal, 662–668. https://doi.org/https://doi.org/10.2136/sssaj2004.6620
  17. Widodo, P. (2015). Jambu Semarang dan Jambu Air. Universitas Jenderal Soedirman.
  18. Yulita, K. S. (2007). Mutasi structural intron trnL (UAA) pada suku meranti-merantian (Dipterocarpaceae) [Structural Mutation of trnL intron (UAA) in Dipterocarpaceae]. Berita Biologi, 8(6), 433–444.
  19. Yulita, K. S. (2013). Secondary Structures of Chloroplast trnL Intron in Dipterocarpaceae and its Implication for the Phylogenetic Reconstruction. HAYATI Journal of Biosciences, 20(1), 31–39. https://doi.org/10.4308/hjb.20.1.31

Open Access Copyright (c) 2023 Al-Hayat: Journal of Biology and Applied Biology
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
apps