GC-MS Study of Bioactive Compound of Peperomia pellucida and Its Antibacterial Activity against Streptococcus mutans


(*) Corresponding Author

Streptococcus mutans is the prior bacteria causing dental caries. Suruhan (Peperomia pellucida) may prevent dental caries due to its antibacterial bioactive content. This study aims to identify the bioactive profile of Suruhan ethanol extract and its antibacterial activity against Streptococcus mutans. Bioactive compounds were analyzed using Gas Chromatography-Mass Spectrometry (GC-MS). Antibacterial activity was tested through an inhibition test using the well-diffusion method, the Minimum Inhibitory Concentration (MIC) test, and the Minimum Bactericidal Concentration (MBC) test. The most detected compounds in Suruhan ethanol extract were n-eicosane, n-hexadecane, and glycerol. There are also antibacterial bioactives such as phenols, flavonoids, alkaloids, and terpenoids. Inhibition test of 500 mg/mL extract showed a clear zone of 8.25 mm diameter. The MIC and MBC values were 50 mg/mL and 100 mg/mL, respectively. Based on the results, Suruhan ethanol extract shows potential as an antibacterial, although its inhibitory effectiveness could be better. 

Keywords: Antibacterial, GC-MS, Peperomia pellucida, Streptococcus mutans

  1. Ahsan, T., Chen, J., Zhao, X., Irfan, M., & Wu, Y. (2017). Extraction and identification of bioactive compounds (eicosane and dibutyl phthalate) produced by Streptomyces strain KX852460 for the biological control of Rhizoctonia solani AG ‑ 3 strain KX852461 to control target spot disease in tobacco leaf. AMB Express, 7(54), 1–9. https://doi.org/10.1186/s13568-017-0351-z
  2. Alejandra, B. M., & Daniel, O. M. (2020). Virulence Factors of Streptococcus mutans Related to Dental Caries. IntechOpen. https://doi.org/10.5772/intechopen.85807
  3. Alghamdi, S. S., Khan, M. A., El-Harty, E. H., Ammar, M. H., Farooq, M., & Migdadi, H. M. (2018). Comparative phytochemical profiling of different soybean (Glycine max (L.) Merr) genotypes using GC-MS. Saudi Journal of Biological Sciences, 25(1), 15–21.
  4. Awuchi, C. G., & Echeta, K. C. (2019). Current developments in sugar alcohols: Chemistry, nutrition, and health concerns of sorbitol, xylitol, glycerol, arabitol, inositol, maltitol, and lactitol. Int. J. Adv. Acad. Res., 5(11), 1–33.
  5. Bai, R., Yao, C., Zhong, Z., Ge, J., Bai, Z., Ye, X., & Xie, Y. (2021). Discovery of natural anti-inflammatory alkaloids: Potential leads for the drug discovery for the treatment of inflammation. European Journal of Medicinal Chemistry, 213, 113165.
  6. Barzic, A. I., & Ioan, S. (2015). Antibacterial drugs—From basic concepts to complex therapeutic mechanisms of polymer systems (Vol. 2015). IntechOpen.
  7. Belyagoubi-Benhammou, N., Belyagoubi, L., Gismondi, A., Di Marco, G., Canini, A., & Atik Bekkara, F. (2019). GC/MS analysis, and antioxidant and antimicrobial activities of alkaloids extracted by polar and apolar solvents from the stems of Anabasis articulata. Medicinal Chemistry Research, 28, 754–767.
  8. Bontjura, S., Waworuntu, O. A., & Siagia, K. V. (2015). Uji Efek Antibakteri Ekstrak Daun Leilem (Clerodendrum minahassae l.) terhadap Bakteri Streptococcus mutans. Pharmacon, 4(4), 96–101.
  9. Bradshaw, D. J., & Lynch, R. J. M. (2013). Diet and the microbial aetiology of dental caries: new paradigms. International Dental Journal, 63(2), 64–72. https://doi.org/10.1111/idj.12072
  10. Brooks, G. F., Carol, K. C., Butel, J. S., Morse, S. A., Mietzner, T. A., Jawetz, M., & Adelberg. (2010). Medical Microbiology (25 Ed). The Mc Graw-Hill Companies.
  11. Carev, I., Gelemanović, A., Glumac, M., Tutek, K., Dželalija, M., Paiardini, A., & Prosseda, G. (2023). Centaurea triumfetii essential oil chemical composition, comparative analysis, and antimicrobial activity of selected compounds. Scientific Reports, 13(1), 1–13. https://doi.org/10.1038/s41598-023-34058-2
  12. Chen, X., Daliri, E. B., Kim, N., Kim, J., Yoo, D., & Oh, D. (2020). Microbial Etiology and Prevention of Dental Caries : Exploiting Natural Products to Inhibit Cariogenic Biofilms. Pathogens, 9(569), 1–15.
  13. Chen, Z., Liu, Q., Zhao, Z., Bai, B., Sun, Z., Cai, L., Fu, Y., Ma, Y., Wang, Q., & Xi, G. (2021). Effect of hydroxyl on antioxidant properties of 2,3- dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one to scavenge free radicals. Royal Society of Chemistry, 11, 34456–34461. https://doi.org/10.1039/d1ra06317k
  14. Chuah, X. Q., Okechukwu, P. N., Amini, F., & Teo, S. Sen. (2018). Eicosane, Pentadecane, and Palmitic acid : The effects in in vitro wound healing studies. Asian Pacific Journal of Tropical Biomedicine, 8(10), 490–499. https://doi.org/10.4103/2221-1691.244158
  15. Davis, W. W., & Stout, T. R. (1971). Disc Plate Methode of Microbiological Antibiotic Assay. Microbiol, 22, 659–665.
  16. Desbois, A. P., & Smith, V. J. (2010). Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Applied Microbiology and Biotechnology, 85(6), 1629–1642.
  17. Fauziati, F., & Sampepana, E. (2021). Kajian Karakteristik Kimia Asap Cair Cangkang Sawit, Tandan Kosong Sawit sebagai Bahan Antibakteri dan Aplikasinya. Jurnal Riset Teknologi Industri, 15(2), 338–347.
  18. Ghavam, M., Afzali, A., Manconi, M., Bacchetta, G., & Manca, M. L. (2021). Variability in chemical composition and antimicrobial activity of essential oil of Rosa damascena Herrm. from mountainous regions of Iran. Chemical and Biological Technologies in Agriculture, 8(1), 1–16.
  19. Ghimire, B. K., Yoo, J. H., Yu, C. Y., & Chung, I.-M. (2017). GC–MS analysis of volatile compounds of Perilla frutescens Britton var. Japonica accessions: Morphological and seasonal variability. Asian Pacific Journal of Tropical Medicine, 10(7), 643–651.
  20. Grembecka, M. (2015). Sugar alcohols—their role in the modern world of sweeteners: a review. European Food Research and Technology, 241, 1–14.
  21. Heni, Arreneuz, S., & Zaharah, T. A. (2015). Efektivitas antibakteri ekstrak kulit batang belimbing hutan (Baccaurea angulata Merr.) terhadap Staphylococcus aureus dan Escherichia coli. Jurnal Kimia Khatulistiwa, 4(1), 84–90.
  22. Hill, S. D., Berry, C. W., Seale, N. S., & Kaga, M. (1991). Comparison of antimicrobial and cytotoxic effects of glutaraldehyde and formocresol. Oral Surgery, Oral Medicine, Oral Pathology, 71(1), 89–95.
  23. Hutagalung, R., Rohaya, S., Lubis, Y., & Safriani, N. (2023). Formulasi Penambahan Tepung Suruhan (Peperomia pellucida L. Kunth) terhadap Total Fenol dan Daya Terima Mutiara Tapioka. Jurnal Ilmiah Mahasiswa Pertanian, 8(2), 293–301.
  24. Jannah, A., Rachmawaty, D. U., & Maunatin, A. (2018). Uji Aktivitas Antibakteri Rambut Jagung Manis (Zea mays ssaccarata Strurt) terhadap Bakteri Staphylococcus aureus dan Escherichia coli. Alchemy, 5(4), 132–137.
  25. Jawetz, E., Melnick, J., & Adelberg, E. (1996). Mikrobiologi Kedokteran. EGC.
  26. Jelita, J., Wirjosentono, B., Tamrin, T., & Marpaung, L. (2019). Aktivitas Antibakteri dan antioksidan dari Ekstrak Daun Kari (Murayya koeginii) Ditinjau dari Waktu Penyimpanan. In Talenta Conference Series: Science and Technology (ST), 2(1), 29–36.
  27. Karpiński, T. M., & Szkaradkiewicz, A. K. (2013). Microbiology of dental caries. Journal of Biology and Earth Sciences, 3(1), 21–24.
  28. Kawuri, R., & Darmayasa, I. B. G. (2019). Bioactive compound of Streptomyces capoamus as biocontrol of Bacterial Wilt Disease on Banana Plant. In IOP Conference Series: Earth and Environmental Science, 374(1), 012054.
  29. Kolarević, S., Milovanović, D., Avdović, M., Oalđe, M., Kostić, J., Sunjog, K., Nikolić, B., & Knežević-vukčević, J. (2016). Optimisation оf the microdilution method for detection of minimum inhibitory concentration values in selected bacteria. Botanica SERBICA, 40(1), 29–36.
  30. Kotagiri, D., Shaik, K. B., & Kolluru, V. C. (2018). Antimicrobial and Antioxidant Properties of Essential Oil Isolated from Coleus zeylanicus under Normal and Salinity Stress Conditions. Free Radicals, Antioxidants and Diseases. https://doi.org/10.5772/intechopen.73966
  31. Kusuma, F. S. A., Hendriani, R., & Genta, A. (2017). Antimicrobial Spectrum of Red Piper Betel Leaf Extract (Piper crocatum Ruiz & Pav) as Natural Antiseptics Against Airborne Pathogens. Journal of Pharmaceutical Sciences and Research, 9(5), 583–587.
  32. Magdalena, N. V., & Kusnadi, J. (2015). Antibakteri dari Ekstrak Kasar Daun Gambir (Uncaria gambir var Cubadak) Metode Microwave-Assisted Extraction terhadap Bakteri Patogen. Jurnal Pangan Dan Agroindustri, 3(1), 124–135.
  33. Milanda, T., Lestari, K., & Tarina, N. T. (2021). Antibacterial Activity of Parijoto (Medinilla speciosa Blume) Fruit Against Serratia marcescens and Staphylococcus aureus. Indonesian Journal of Pharmaceutical Science and Technology, 8(2), 76–85.
  34. Naibaho, F. G., Hartanto, A., Bintang, M., Jamilah, I., Priyani, N., & Putra, E. D. (2021). GC-MS analysis and antimicrobial activity of the aqueous extract from the bulbs of Allium chinense G. Don. cultivated in North Sumatra, Indonesia. Asian J Agric & Biol., 2, 1–10. https://doi.org/10.35495/ajab.2019.12.562
  35. Okoh, S. O., Iweriebor, B. C., Okoh, O. O., & Okoh, A. I. (2017). Bioactive Constituents , Radical Scavenging , and Antibacterial Properties of the Leaves and Stem Essential Oils from Peperomia pellucida (L.) Kunth. Pharmacognosy Magazine, 13(3), 392–400. https://doi.org/10.4103/pm.pm
  36. Oliveira, B. De, Ferrisse, M., & Marques, R. S. (2019). E ff ect of Photodynamic Therapy on Microorganisms Responsible for Dental Caries : A Systematic Review and Meta-Analysis. International Journal of Molecular Sciences, 20(3585), 1–16. https://doi.org/10.3390/ijms20143585
  37. Osman, H., Nehela, Y., Elzaawely, A. A., El-Morsy, M., Yogeswari, S., Ramalakshmi, S., Neelavathy, R., & Muthumary, J. (2023). Two Bacterial Bioagents Boost Onion Response to Stromatinia cepivora and Promote Growth and Yield via Enhancing the Antioxidant Defense System and Auxin Production. Horticulturae, 9(7), 1–23.
  38. Pebrian, R. F., Partiwi, S., Nangka, K. P., & Fitokimia, P. (2021). Pengaruh Perbedaan Metode Maserasi dan Remaserasi Kulit Pisang Nangka (Musa paradiciaca L.) terhadap Penapisan Fitokimia. Journal of Herbs and Farmacological, 3(2), 89–95.
  39. Rahman, F. A., Haniastuti, T., & Utami, T. W. (2017). Skrining fitokimia dan aktivitas antibakteri ekstrak etanol daun sirsak (Annona muricata L.) pada Streptococcus mutans ATCC 35668. Majalah Kedokteran Gigi Indonesia, 3(1), 1–7.
  40. Rehman, M., Arshad, A., & Madni, M. A. (2017). Nanoformulated Myristic Acid for Antimicrobial Applications. GPSR Journal, 2(1), 1–9. https://doi.org/10.31703/gpsr.2017(II-I).01
  41. Resti, I. A., & Parbuntari, H. (2022). Identifikasi Senyawa Metabolit Sekunder Ekstrak Jamur Tiram Putih (Pleurotus ostreatus L.). Periodic, 11(2), 65–69.
  42. Shaquiquzzaman, M., Verma, G., Marella, A., Akhter, M., Akhtar, W., Khan, M. F., & Alam, M. M. (2015). Piperazine scaffold: A remarkable tool in generation of diverse pharmacological agents. European Journal of Medicinal Chemistry, 102, 487–529.
  43. Sheikh, H., Sikder, S., Paul, S. K., Hasan, A. R., Rahaman, M., & Kundu, S. P. (2013). Hypoglycemic, Anti-inflammatory and Analgesic activity of Peperomia pellucida (L.) HBK (piperaceae). International Journal of Pharmaceutical Sciences and Research, 4(1), 458–463.
  44. Shetty, S. B., Mahin-syed-ismail, P., Varghese, S., Thomas-george, B., & Kandathil-, P. (2016). Antimicrobial effects of Citrus sinensis peel extracts against dental caries bacteria : An in vitro study. Journal Section: Community and Preventive Dentistry, 8(1), 71–77. https://doi.org/10.4317/jced.52493
  45. Simatupang, R. A., Tombuku, J. L., Pareta, D. N., & Lengkey, Y. K. (2021). Uji Aktivitas Antioksidan Ekstrak Bunga Bougenville Bougainvillea glabra sebagai Antioksidan. Biofarmasetikal Tropis, 4(1), 30–39.
  46. Soboyejo, F., & Ade-Ademilua, O. E. (2017). Growth and Antidiabetic Activities of Peperomia Pellucida L. Plants Grown under Different Watering Regimes. UNILAG Journal of Medicine, Science, and Technology, 5(1), 1–14.
  47. Sumayya, S. S., Lubaina, A. S., & Murugan, K. (2020). Bactericidal Potentiality of Purified Terpenoid Extracts from the Selected Sea Weeds and its Mode of Action. Journal of Tropical Life Science, 10(3), 197–205. https://doi.org/10.11594/jtls.10.03.03.Sumayya
  48. Teoh, L., Gnanasegaran, N., Faris, A., Adnan, M., & Taha, R. M. (2021). The comparative antimicrobial and anticancer of chemical extract from in vitro and in vivo Peperomia pellucida plantlet. Journal of Applied Biology and Biotechnology, 9(2), 115–123. https://doi.org/10.7324/JABB.2021.9210
  49. Torras-claveria, L., Berkov, S., Jáuregui, O., & Caujapé, J. (2010). Metabolic Proi ling of Bioactive Pancratium canariense Extracts by GC-MS †. Phytochemical Analysis, 21, 80–88. https://doi.org/10.1002/pca.1158
  50. Yan, Y., Li, X., Zhang, C., Lijuan, Gao, B., & Li, M. (2021). Research Progress on Antibacterial Activities and Mechanisms of Natural Alkaloids: A Review. Antibiotics, 10(3), 318.
  51. Yogeswari, S., Ramalakshmi, S., Neelavathy, R., & Muthumary, J. (2012). Identification and Comparative Studies of Different Volatile Fractions from Monochaetia kansensis by GCMS. Global Journal of Pharmacology, 6(2), 65–71.

Open Access Copyright (c) 2024 Al-Hayat: Journal of Biology and Applied Biology
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
apps