Appropriate Concentration of Curcumin as a Growth Factor in Neural Stem Cells
DOI:
https://doi.org/10.21580/ah.v7i2.20862Keywords:
NSC, Curcumin, proliferation, MAP-2, Nestin, Sox2Abstract
The growth of Neural Stem Cell (NSC) in adult organisms is limited. Therefore, growth factors are needed to stimulate NSC cell proliferation and differentiation. Herbal Curcumin may be a growth factor. We promoted the growth of Cryopreserved Rat Cortical NSC cells with Curcumin (0.1 µM; 0.5 µM; 1 µM; 2 µM), DMSO, and synthetic growth factors (bFGF, TGF, and heparin). We analyzed the proliferation ability of NSCs by WST-1 assay, cell morphology, and expression of NCS cell marker genes (Nestin, MAP, and Sox2). Morphological analysis showed that cells reproduced optimally at 0.5 µM. The one-way ANOVA and Tukey's posthoc test on the WST-1 test showed significant differences between 0.5 µMCurcumin and other treatment groups. Sox2, MAP-2, and Nestin gene expression peaked at 0.5 µM. The appropriate concentration of Curcumin to stimulate NSC proliferation is 0.5 µM. Herbal extract curcumin has the same effect as commercial growth factors and can substitute synthetic growth factors. Curcumin acts as a growth factor that stimulates the proliferation of mouse NSCs.References
AranhaMá, M. M., Santos, D. M., Solá, S., Steer, C. J., & RodriguesCecí, C. M. P. (2011). MiR-34a regulates mouse neural stem cell differentiation. PLoS ONE, 6(8). https://doi.org/10.1371/journal.pone.0021396
Arnold, K., Sarkar, A., Yram, M. A., Polo, J. M., Bronson, R., Sengupta, S., Seandel, M., Geijsen, N., & Hochedlinger, K. (2011). Sox2 + adult stem and progenitor cells are important for tissue regeneration and survival of mice. Cell Stem Cell, 9(4), 317–329. https://doi.org/10.1016/j.stem.2011.09.001
Arundina, I., Suardita, K., Diyatri, I., & Dwi, M. (2018). Journal of International Dental and Medical Research ISSN 1309-100X Ira Arundina and et al Volume • 11 • Number • 3 • 2018 Experimental article. In J Int Dent Med Res (Vol. 11, Issue 3). http://www.jidmr.com
Attari, F., Zahmatkesh, M., Aligholi, H., Mehr, S. E., Sharifzadeh, M., Gorji, A., Mokhtari, T., Khaksarian, M., & Hassanzadeh, G. (2015). Curcumin as a double-edged sword for stem cells: Dose, time and cell type-specific responses to curcumin. DARU, Journal of Pharmaceutical Sciences, 23(1), 2703–2706. https://doi.org/10.1186/s40199-015-0115-8
Bang, W. S., Kim, K. T., Seo, Y. J., Cho, D. C., Sung, J. K., & Kim, C. H. (2018). Curcumin increase the expression of neural stem/progenitor cells and improves functional recovery after spinal cord injury. Journal of Korean Neurosurgical Society, 61(1), 10–18. https://doi.org/10.3340/jkns.2017.0203.003
Bott, C. J., Johnson, C. G., Yap, C. C., Dwyer, N. D., Litwa, K. A., & Winckler, B. (2019). Nestin in immature embryonic neurons affects axon growth cone morphology and Semaphorin3a sensitivity. Molecular Biology of the Cell, 30(10), 1214–1229. https://doi.org/10.1091/mbc.E18-06-0361
Castelo-Branco, G., Lilja, T., Wallenborg, K., Falcão, A. M., Marques, S. C., Gracias, A., Solum, D., Paap, R., Walfridsson, J., Teixeira, A. I., Rosenfeld, M. G., Jepsen, K., & Hermanson, O. (2014). Neural stem cell differentiation is dictated by distinct actions of nuclear receptor corepressors and histone deacetylases. Stem Cell Reports, 3(3), 502–515. https://doi.org/10.1016/j.stemcr.2014.07.008
Chen, Y., Xu, H., & Lin, G. (2017). Generation of iPSC-derived limb progenitor-like cells for stimulating phalange regeneration in the adult mouse. Cell Discovery, 3, 1–14. https://doi.org/10.1038/celldisc.2017.46
Chen, Z., Wang, L., Chen, C., Sun, J., Luo, J., & Cui, W. (2022). NSC-derived extracellular matrix-modi fi ed GelMA hydrogel fi brous scaffolds for spinal cord injury repair. https://doi.org/10.1038/s41427-022-00368-6
Fernando, P., Brunette, S., & Megeney, L. A. (2005). Neural stem cell differentiation is dependent upon endogenous caspase‐3 activity. The FASEB Journal, 19(12), 1671–1673. https://doi.org/10.1096/fj.04-2981fje
Galvao, J., Davis, B., Tilley, M., Normando, E., Duchen, M. R., & Cordeiro, M. F. (2014). Unexpected low-dose toxicity of the universal solvent DMSO. FASEB Journal, 28(3), 1317–1330. https://doi.org/10.1096/fj.13-235440
Gersey, Z. C., Rodriguez, G. A., Barbarite, E., Sanchez, A., Walters, W. M., Ohaeto, K. C., Komotar, R. J., & Graham, R. M. (2017). Curcumin decreases malignant characteristics of glioblastoma stem cells via induction of reactive oxygen species. BMC Cancer, 17(1), 1–11. https://doi.org/10.1186/s12885-017-3058-2
Gu, Q., Cai, Y., Huang, C., Shi, Q., & Yang, H. (2012). Curcumin increases rat mesenchymal stem cell osteoblast differentiation but inhibits adipocyte differentiation. Pharmacognosy Magazine, 8(31), 202–208. https://doi.org/10.4103/0973-1296.99285
Ma, X., Wang, Y., Houle, M. E., Zhou, S., Erfani, S. M., Wijewickrema, S., & Bailey, J. (2018). Ma18D.Pdf.
Mizukoshi, K., Koyama, N., Hayashi, T., Zheng, L., Matsuura, S., & Kashimata, M. (2016). Shh/Ptch and EGF/ErbB cooperatively regulate branching morphogenesis of fetal mouse submandibular glands. Developmental Biology, 412(2), 278–287. https://doi.org/10.1016/j.ydbio.2016.02.018
Mohammad, M. H., Al-Shammari, A. M., Al-Juboory, A. A., & Yaseen, N. Y. (2016). Characterization of neural stemness status through the neurogenesis process for bone marrow mesenchymal stem cells. Stem Cells and Cloning: Advances and Applications, 9, 1–15. https://doi.org/10.2147/SCCAA.S94545
Qi, L., Li, N., Tang, M. L., & Cheng, G. S. (2013). The effects of topology on neural stem cell proliferation and differentiation. Journal of Neurochemistry, 125, 171. http://gateway.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=emed11&AN=71030015%5Cnhttp://sfx.nottingham.ac.uk:80/sfx_local?genre=article&atitle=The+effects+of+topology+on+neural+stem+cell+proliferation+and+differentiation&title=Journal+of+Neuroc
Singh, D., Kumar, V., & Singh, V. (2020). Et3N/DMSO-supported one-pot synthesis of highly fluorescent β-carboline-linked benzothiophenones via sulfur insertion and estimation of the photophysical properties. Beilstein Journal of Organic Chemistry, 16, 1740–1753. https://doi.org/10.3762/BJOC.16.146
Stulberg, M. J., Lin, A., Zhao, H., & Holley, S. A. (2012). Crosstalk between Fgf and Wnt signaling in the zebrafish tailbud. Developmental Biology, 369(2), 298–307. https://doi.org/10.1016/j.ydbio.2012.07.003
Tian, T., Zhang, Y., Wang, S., Zhou, J., & Xu, S. (2012). Sox2 enhances the tumorigenicity and chemoresistance of cancer stem-like cells derived from gastric cancer. Journal of Biomedical Research, 26(5), 336–345. https://doi.org/10.7555/JBR.26.20120045
Udalamaththa, V. L., Jayasinghe, C. D., & Udagama, P. V. (2016). Potential role of herbal remedies in stem cell therapy: proliferation and differentiation of human mesenchymal stromal cells. Stem Cell Research and Therapy, 7(1), 1–8. https://doi.org/10.1186/s13287-016-0366-4
Wang, H., Mei, X., Cao, Y., Liu, C., Zhao, Z., Guo, Z., Bi, Y., Shen, Z., Yuan, Y., Guo, Y., Song, C., Bai, L., Wang, Y., & Yu, D. (2017). HMGB1/Advanced Glycation End Products (RAGE) does not aggravate inflammation but promote endogenous neural stem cells differentiation in spinal cord injury. Scientific Reports, 7(1), 1–12. https://doi.org/10.1038/s41598-017-10611-8
Downloads
Published
Issue
Section
License
The copyright of the received article shall be assigned to the journal as the publisher of the journal. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to the published articles. Authors are allowed to use their articles for any legal purposes deemed necessary without written permission from the journal with an acknowledgment of initial publication to this journal.
The work under license Creative Commons Attribution-ShareAlike 4.0 International License.