Appropriate Concentration of Curcumin as a Growth Factor in Neural Stem Cells

Authors

  • Titta Novianti Universitas Esa Unggul https://orcid.org/0000-0002-0058-7222
  • Muhamad Panji Januarsyah Kurniawan Department of Biology, Faculty of Science and Technology, Universitas Esa Unggul
  • Ita M Nainggolan School of Medicine and Health Sciences, Universitas Katolik Indonesia Atma Jaya

DOI:

https://doi.org/10.21580/ah.v7i2.20862

Keywords:

NSC, Curcumin, proliferation, MAP-2, Nestin, Sox2

Abstract

The growth of Neural Stem Cell (NSC) in adult organisms is limited. Therefore, growth factors are needed to stimulate NSC cell proliferation and differentiation. Herbal Curcumin may be a growth factor. We promoted the growth of Cryopreserved Rat Cortical NSC cells with Curcumin (0.1 µM; 0.5 µM; 1 µM; 2 µM), DMSO, and synthetic growth factors (bFGF, TGF, and heparin). We analyzed the proliferation ability of NSCs by WST-1 assay, cell morphology, and expression of NCS cell marker genes (Nestin, MAP, and Sox2). Morphological analysis showed that cells reproduced optimally at 0.5 µM. The one-way ANOVA and Tukey's posthoc test on the WST-1 test showed significant differences between 0.5 µMCurcumin and other treatment groups. Sox2, MAP-2, and Nestin gene expression peaked at 0.5 µM. The appropriate concentration of Curcumin to stimulate NSC proliferation is 0.5 µM. Herbal extract curcumin has the same effect as commercial growth factors and can substitute synthetic growth factors. Curcumin acts as a growth factor that stimulates the proliferation of mouse NSCs.

Author Biography

Titta Novianti, Universitas Esa Unggul

Department Biotechnology, Faculty of Health Sciences

References

AranhaMá, M. M., Santos, D. M., Solá, S., Steer, C. J., & RodriguesCecí, C. M. P. (2011). MiR-34a regulates mouse neural stem cell differentiation. PLoS ONE, 6(8). https://doi.org/10.1371/journal.pone.0021396

Arnold, K., Sarkar, A., Yram, M. A., Polo, J. M., Bronson, R., Sengupta, S., Seandel, M., Geijsen, N., & Hochedlinger, K. (2011). Sox2 + adult stem and progenitor cells are important for tissue regeneration and survival of mice. Cell Stem Cell, 9(4), 317–329. https://doi.org/10.1016/j.stem.2011.09.001

Arundina, I., Suardita, K., Diyatri, I., & Dwi, M. (2018). Journal of International Dental and Medical Research ISSN 1309-100X Ira Arundina and et al Volume • 11 • Number • 3 • 2018 Experimental article. In J Int Dent Med Res (Vol. 11, Issue 3). http://www.jidmr.com

Attari, F., Zahmatkesh, M., Aligholi, H., Mehr, S. E., Sharifzadeh, M., Gorji, A., Mokhtari, T., Khaksarian, M., & Hassanzadeh, G. (2015). Curcumin as a double-edged sword for stem cells: Dose, time and cell type-specific responses to curcumin. DARU, Journal of Pharmaceutical Sciences, 23(1), 2703–2706. https://doi.org/10.1186/s40199-015-0115-8

Bang, W. S., Kim, K. T., Seo, Y. J., Cho, D. C., Sung, J. K., & Kim, C. H. (2018). Curcumin increase the expression of neural stem/progenitor cells and improves functional recovery after spinal cord injury. Journal of Korean Neurosurgical Society, 61(1), 10–18. https://doi.org/10.3340/jkns.2017.0203.003

Bott, C. J., Johnson, C. G., Yap, C. C., Dwyer, N. D., Litwa, K. A., & Winckler, B. (2019). Nestin in immature embryonic neurons affects axon growth cone morphology and Semaphorin3a sensitivity. Molecular Biology of the Cell, 30(10), 1214–1229. https://doi.org/10.1091/mbc.E18-06-0361

Castelo-Branco, G., Lilja, T., Wallenborg, K., Falcão, A. M., Marques, S. C., Gracias, A., Solum, D., Paap, R., Walfridsson, J., Teixeira, A. I., Rosenfeld, M. G., Jepsen, K., & Hermanson, O. (2014). Neural stem cell differentiation is dictated by distinct actions of nuclear receptor corepressors and histone deacetylases. Stem Cell Reports, 3(3), 502–515. https://doi.org/10.1016/j.stemcr.2014.07.008

Chen, Y., Xu, H., & Lin, G. (2017). Generation of iPSC-derived limb progenitor-like cells for stimulating phalange regeneration in the adult mouse. Cell Discovery, 3, 1–14. https://doi.org/10.1038/celldisc.2017.46

Chen, Z., Wang, L., Chen, C., Sun, J., Luo, J., & Cui, W. (2022). NSC-derived extracellular matrix-modi fi ed GelMA hydrogel fi brous scaffolds for spinal cord injury repair. https://doi.org/10.1038/s41427-022-00368-6

Fernando, P., Brunette, S., & Megeney, L. A. (2005). Neural stem cell differentiation is dependent upon endogenous caspase‐3 activity. The FASEB Journal, 19(12), 1671–1673. https://doi.org/10.1096/fj.04-2981fje

Galvao, J., Davis, B., Tilley, M., Normando, E., Duchen, M. R., & Cordeiro, M. F. (2014). Unexpected low-dose toxicity of the universal solvent DMSO. FASEB Journal, 28(3), 1317–1330. https://doi.org/10.1096/fj.13-235440

Gersey, Z. C., Rodriguez, G. A., Barbarite, E., Sanchez, A., Walters, W. M., Ohaeto, K. C., Komotar, R. J., & Graham, R. M. (2017). Curcumin decreases malignant characteristics of glioblastoma stem cells via induction of reactive oxygen species. BMC Cancer, 17(1), 1–11. https://doi.org/10.1186/s12885-017-3058-2

Gu, Q., Cai, Y., Huang, C., Shi, Q., & Yang, H. (2012). Curcumin increases rat mesenchymal stem cell osteoblast differentiation but inhibits adipocyte differentiation. Pharmacognosy Magazine, 8(31), 202–208. https://doi.org/10.4103/0973-1296.99285

Ma, X., Wang, Y., Houle, M. E., Zhou, S., Erfani, S. M., Wijewickrema, S., & Bailey, J. (2018). Ma18D.Pdf.

Mizukoshi, K., Koyama, N., Hayashi, T., Zheng, L., Matsuura, S., & Kashimata, M. (2016). Shh/Ptch and EGF/ErbB cooperatively regulate branching morphogenesis of fetal mouse submandibular glands. Developmental Biology, 412(2), 278–287. https://doi.org/10.1016/j.ydbio.2016.02.018

Mohammad, M. H., Al-Shammari, A. M., Al-Juboory, A. A., & Yaseen, N. Y. (2016). Characterization of neural stemness status through the neurogenesis process for bone marrow mesenchymal stem cells. Stem Cells and Cloning: Advances and Applications, 9, 1–15. https://doi.org/10.2147/SCCAA.S94545

Qi, L., Li, N., Tang, M. L., & Cheng, G. S. (2013). The effects of topology on neural stem cell proliferation and differentiation. Journal of Neurochemistry, 125, 171. http://gateway.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=emed11&AN=71030015%5Cnhttp://sfx.nottingham.ac.uk:80/sfx_local?genre=article&atitle=The+effects+of+topology+on+neural+stem+cell+proliferation+and+differentiation&title=Journal+of+Neuroc

Singh, D., Kumar, V., & Singh, V. (2020). Et3N/DMSO-supported one-pot synthesis of highly fluorescent β-carboline-linked benzothiophenones via sulfur insertion and estimation of the photophysical properties. Beilstein Journal of Organic Chemistry, 16, 1740–1753. https://doi.org/10.3762/BJOC.16.146

Stulberg, M. J., Lin, A., Zhao, H., & Holley, S. A. (2012). Crosstalk between Fgf and Wnt signaling in the zebrafish tailbud. Developmental Biology, 369(2), 298–307. https://doi.org/10.1016/j.ydbio.2012.07.003

Tian, T., Zhang, Y., Wang, S., Zhou, J., & Xu, S. (2012). Sox2 enhances the tumorigenicity and chemoresistance of cancer stem-like cells derived from gastric cancer. Journal of Biomedical Research, 26(5), 336–345. https://doi.org/10.7555/JBR.26.20120045

Udalamaththa, V. L., Jayasinghe, C. D., & Udagama, P. V. (2016). Potential role of herbal remedies in stem cell therapy: proliferation and differentiation of human mesenchymal stromal cells. Stem Cell Research and Therapy, 7(1), 1–8. https://doi.org/10.1186/s13287-016-0366-4

Wang, H., Mei, X., Cao, Y., Liu, C., Zhao, Z., Guo, Z., Bi, Y., Shen, Z., Yuan, Y., Guo, Y., Song, C., Bai, L., Wang, Y., & Yu, D. (2017). HMGB1/Advanced Glycation End Products (RAGE) does not aggravate inflammation but promote endogenous neural stem cells differentiation in spinal cord injury. Scientific Reports, 7(1), 1–12. https://doi.org/10.1038/s41598-017-10611-8

Downloads

Published

2024-12-02

Issue

Section

Articles