Isolation and Molecular Identification of Cadmium-Resistant Bacteria from Paddy Soil in the Tallo Watershed, Makassar

Main Article Content

Risky Nurhikmayani
Aghis Sukma Dewi

Abstract

Cadmium contamination of paddy soils is a global concern because Cd can accumulate in rice through nutrient absorption, posing a food safety risk. More than a quarter of the Tallo watershed area, Makassar is a rice field that is vulnerable to pollution due to industrial activities and water runoff from urban areas. This study aims to isolate and identify Cd-resistant bacteria from paddy field soils in the Tallo watershed to find potential isolates that have the potential for bioremediation. The soil samples collected were from the rhizosphere of rice fields in the Tallo watershed, which were varying distances from the Tallo Main River. Bacterial isolation used nutrient agar media, followed by Cd resistance testing using Nutrient Agar-CdCl₂ media with increasing concentrations from 10 mg L-1 to 110 mg L-1. Molecular identification was carried out on the most Cd-tolerant isolates using the 16S rRNA marker gene with primers 27F and 1492R. From the isolation, 22 isolates were obtained, with 19 isolates resistant to CdCl2 10 mg L-1; Only five isolates could continue growing at a concentration of 100 mg L-1, and only one isolate could grow up to a concentration of 110 mg L-1; the isolate was L1(4). The isolate L1(4) exhibited the best growth and was identified as Aeromonas veronii through 16S rRNA gene sequencing. These findings highlight Aeromonas veronii as a promising candidate for the bioremediation of Cd-contaminated soils in the Tallo watershed

Downloads

Download data is not yet available.

Article Details

Section
Articles

References

Agustiani, R. D., Oedjijono, Rahmani, N., & Ekowati, N. (2023). Isolation and Characterization of Rhizospheric Bacteria Associated with Canna Plant for Production of Maltooligosaccharide Amylase. Journal of Tropical Biodiversity and Biotechnology, 8(2). https://doi.org/10.22146/jtbb.78346

Aliyu, A. D., Mustafa, M., Aziz, N. A. A., Kong, Y. C., & Hadi, N. S. (2023). Assessing Indigenous Soil Ureolytic Bacteria as Potential Agents for Soil Stabilization. Journal of Tropical Biodiversity and Biotechnology, 8(1). https://doi.org/10.22146/jtbb.75128

Ayangbenro, A. S., & Babalola, O. O. (2017). A new strategy for heavy metal polluted environments: A review of microbial biosorbents. In International Journal of Environmental Research and Public Health (Vol. 14, Issue 1). MDPI. https://doi.org/10.3390/ijerph14010094

Babich, H., & Stotizky, G. (1977). Sensitivity of Various Bacteria, Including Actinomycetes, and Fungi to Cadmium and the Influence of pH on Sensitivity. In APPLIED AND ENVIRONMENTAL MICROBIOLOGY.

Bravo, D., & Braissant, O. (2022). Cadmium-tolerant bacteria: current trends and applications in agriculture. In Letters in Applied Microbiology (Vol. 74, Issue 3, pp. 311–333). John Wiley and Sons Inc. https://doi.org/10.1111/lam.13594

Chakravarty, R., & Banerjee, P. C. (2008). Morphological changes in an acidophilic bacterium induced by heavy metals. Extremophiles, 12(2), 279–284. https://doi.org/10.1007/s00792-007-0128-4

Charkiewicz, A. E., Omeljaniuk, W. J., Nowak, K., Garley, M., & Nikliński, J. (2023). Cadmium Toxicity and Health Effects—A Brief Summary. In Molecules (Vol. 28, Issue 18). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/molecules28186620

Danso, O. P., Acheampong, A., Zhang, Z., Song, J., Wang, Z., Dai, J., Zhi, T., Yin, X., & Zhu, R. (2023). The management of Cd in rice with biochar and selenium: effects, efficiency, and practices. Carbon Research, 2(1). https://doi.org/10.1007/s44246-023-00073-1

Fahruddin, F., Kasim, S., & Rahayu, E. U. (2020). Cadmium (Cd) Resistance of Isolate Bacteria from Poboya Gold Mining in Palu, Central Sulawesi. Jurnal Biologi Tropis, 20(2), 298–304. https://doi.org/10.29303/jbt.v20i2.2013

Feng, W., Guo, Z., Xiao, X., Peng, C., Shi, L., Ran, H., & Xu, W. (2019). Atmospheric deposition as a source of cadmium and lead to soil-rice system and associated risk assessment. Ecotoxicology and Environmental Safety, 180, 160–167. https://doi.org/10.1016/j.ecoenv.2019.04.090

Feria-Cáceres, P. F., Penagos-Velez, L., & Moreno-Herrera, C. X. (2022). Tolerance and Cadmium (Cd) Immobilization by Native Bacteria Isolated in Cocoa Soils with Increased Metal Content. Microbiology Research, 13(3), 556–573. https://doi.org/10.3390/microbiolres13030039

Gao, Y., Duan, Z., Zhang, L., Sun, D., & Li, X. (2022). The Status and Research Progress of Cadmium Pollution in Rice- (Oryza sativa L.) and Wheat- (Triticum aestivum L.) Cropping Systems in China: A Critical Review. In Toxics (Vol. 10, Issue 12). MDPI. https://doi.org/10.3390/toxics10120794

Genchi, G., Sinicropi, M. S., Lauria, G., Carocci, A., & Catalano, A. (2020). The effects of cadmium toxicity. In International Journal of Environmental Research and Public Health (Vol. 17, Issue 11). MDPI AG. https://doi.org/10.3390/ijerph17113782

Ghorui, A., Pal, S., Pal, S., Ghosh, K., Dutta, U., Dey Sutradhar, B., Das, D., Pal, P., & Laha, A. (2023). Cadmium (Cd) Resistant Bacteria. Journal of Survey in Fisheries Sciences, 10(1S), 6463–6469.

Gonçalves Pessoa, R. B., de Oliveira, W. F., Marques, D. S. C., dos Santos Correia, M. T., de Carvalho, E. V. M. M., & Coelho, L. C. B. B. (2019). The genus Aeromonas: A general approach. Microbial Pathogenesis, 130, 81–94. https://doi.org/10.1016/j.micpath.2019.02.036

Guerra, R. M., Maleno, F. D., Figueras, M. J., Pujol-Bajador, I., & Fernández-Bravo, A. (2022). Potential Pathogenicity of Aeromonas spp. Recovered in River Water, Soil, and Vegetation from a Natural Recreational Area. Pathogens, 11(11). https://doi.org/10.3390/pathogens11111382

Han, J., Wu, D., Yang, J., Shi, Y., Abid, G., Wang, L., & Li, Z. (2024). A biochar-based amendment improved cadmium (Cd) immobilization, reduced its bioaccumulation, and increased rice yield. Frontiers in Environmental Science, 12. https://doi.org/10.3389/fenvs.2024.1487190

Ibrahim, U. B., Yahaya, S., Yusuf, I., & Kawo, A. H. (2020). Cadmium (Cd) and Lead (Pb) Uptake Potential and Surface Properties of Aeromonas spp. Isolated from Soil of Local Mining Site. Microbiology Research Journal International, 36–47. https://doi.org/10.9734/mrji/2020/v30i330203

Jais, K. N., Ikhtiar, M., Gafur, A., Abbas, H. H., Lingkungan, P. K., Masyarakat, K., Muslim Indonesia, U., & Epidemiologi, P. (2020). Bioakumulasi Logam Berat Kadmium (Cd) dan Kromium (Cr) yang terdapat dalam Air dan Ikan di Sungai Tallo Makassar. Window of Public Health Journal, 01(03), 261–274.

Ji, W., Chen, Z., Li, D., & Ni, W. (2012). Identifying the Criteria of Cadmium Pollution in Paddy Soils Based on a Field Survey. Energy Procedia, 16, 27–31. https://doi.org/10.1016/j.egypro.2012.01.006

Jiang, K., Deng, X., Zhou, H., Long, J., Dong, X., Huang, J., Hou, H. bo, Peng, P. qin, & Liao, B. han. (2021). Health risk assessment of Cd pollution in irrigated paddy field system: A field investigation in Hunan Province, China. Human and Ecological Risk Assessment, 27(2), 352–367. https://doi.org/10.1080/10807039.2020.1715203

Jing, H., Yang, W., Chen, Y., Yang, L., Zhou, H., Yang, Y., Zhao, Z., Wu, P., & Zia-ur-Rehman, M. (2023). Exploring the mechanism of Cd uptake and translocation in rice: Future perspectives of rice safety. Science of The Total Environment, 897, 165369. https://doi.org/https://doi.org/10.1016/j.scitotenv.2023.165369

Khan, Z., Elahi, A., Bukhari, D. A., & Rehman, A. (2022). Cadmium sources, toxicity, resistance and removal by microorganisms-A potential strategy for cadmium eradication. In Journal of Saudi Chemical Society (Vol. 26, Issue 6). Elsevier B.V. https://doi.org/10.1016/j.jscs.2022.101569

Kim, M., & Chun, J. (2014). Chapter 4 - 16S rRNA Gene-Based Identification of Bacteria and Archaea using the EzTaxon Server. In M. Goodfellow, I. Sutcliffe, & J. Chun (Eds.), Methods in Microbiology (Vol. 41, pp. 61–74). Academic Press. https://doi.org/https://doi.org/10.1016/bs.mim.2014.08.001

Lv, L., Jiao, Z., Ge, S., Zhan, W., Ruan, X., & Wang, Y. (2022). Assessment of Cd Pollution in Paddy Soil–Rice System in Silver Mining-Affected Areas: Pollution Status, Transformation and Health Risk Assessment. International Journal of Environmental Research and Public Health, 19(19). https://doi.org/10.3390/ijerph191912362

Ma, B., Song, W., Zhang, X., Chen, M., Li, J., Yang, X., & Zhang, L. (2023). Potential application of novel cadmium-tolerant bacteria in bioremediation of Cd-contaminated soil. Ecotoxicology and Environmental Safety, 255. https://doi.org/10.1016/j.ecoenv.2023.114766

Mahluddin, N., Gafur, A., & Yulianti. (2022). Bioakumulasi Logam Berat Timbal (Pb) dan Kadmium (Cd) Pada Kerang Hijau, Air, dan Sedimen. Window of Public Health Journal, 3(1), 119129. http://jurnal.fkm.umi.ac.id/index.pHp/wopH/article/view/woph3112

Makki, R. M., El-Hamshary, O. I. M., & Almarhabi, Z. M. (2019). Isolation and molecular identification of bacterial strains to study biofilm formation and heavy metals resistance in Saudi Arabia. Journal of Pure and Applied Microbiology, 13(1), 419–432. https://doi.org/10.22207/JPAM.13.1.46

Martínez-Murcia, A., Beaz-Hidalgo, R., Navarro, A., Carvalho, M. J., Aravena-Román, M., Correia, A., Figueras, M. J., & Saavedra, M. J. (2016). Aeromonas lusitana sp. nov., Isolated from Untreated Water and Vegetables. In Current Microbiology (Vol. 72, Issue 6, pp. 795–803). Springer New York LLC. https://doi.org/10.1007/s00284-016-0997-9

Matyar, F., Gülnaz, O., Guzeldag, G., Mercimek, H. A., Akturk, S., Arkut, A., & Sumengen, M. (2014). Antibiotic and heavy metal resistance in Gram-negative bacteria isolated from the Seyhan Dam Lake and Seyhan River in Turkey. Annals of Microbiology, 64(3), 1033–1040. https://doi.org/10.1007/s13213-013-0740-8

Meriem, S. (2021). Mitigasi Cekaman Kadmium (Cd) pada Tanaman Padi (Oryza sativa L.): Pendekatan Fisiologi dan Molekuler. Berita Biologi : Jurnal Ilmu Hayati , 22(1), 1–12. https://doi.org/10.14203/beritabiologi.v20i1.3991

Nurhikmayani, R., Daryono, B. S., & Retnaningrum, E. (2019). Isolation and molecular identification of antimicrobial-producing lactic acid bacteria from chao, South Sulawesi (Indonesia) fermented fish product. Biodiversitas, 20(4), 1063–1068. https://doi.org/10.13057/biodiv/d200418

Pessoa, R. B. G., Oliveira, W. F. de, Correia, M. T. dos S., Fontes, A., & Coelho, L. C. B. B. (2022). Aeromonas and Human Health Disorders: Clinical Approaches. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.868890

Qurbani, K., Khdir, K., Sidiq, A., Hamzah, H., Hussein, S., Hamad, Z., Abdulla, R., Abdulla, B., & Azizi, Z. (2022). Aeromonas sobria as a potential candidate for bioremediation of heavy metal from contaminated environments. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-25781-3

Rahimzadeh, M. R., Rahimzadeh, M. R., Kazemi, S., & Moghadamnia, A. A. (2017). Cadmium toxicity and treatment: An update. Caspian Journal of Internal Medicine, 8(3), 135–145. https://doi.org/10.22088/cjim.8.3.135

Rante, H., Manggau, M. A., Alam, G., Pakki, E., Erviani, A. E., Hafidah, N., Abidin, H. L., & Ali, A. (2024). Isolation and identification of Actinomycetes with antifungal activity from karts ecosystem in Maros-Pangkep, Indonesia. Biodiversitas, 25(2), 458–464. https://doi.org/10.13057/biodiv/d250203

Rashid, A., Schutte, B. J., Ulery, A., Deyholos, M. K., Sanogo, S., Lehnhoff, E. A., & Beck, L. (2023). Heavy Metal Contamination in Agricultural Soil: Environmental Pollutants Affecting Crop Health. In Agronomy (Vol. 13, Issue 6). MDPI. https://doi.org/10.3390/agronomy13061521

Sen, S. K., Raut, S., Dora, T. K., & Mohapatra, P. K. Das. (2014). Contribution of hot spring bacterial consortium in cadmium and lead bioremediation through quadratic programming model. Journal of Hazardous Materials, 265, 47–60. https://doi.org/10.1016/j.jhazmat.2013.11.036

Setiawan, H. (2014). Pencemaran Logam Berat di Perairan Pesisir Kota Makassar dan Upaya Penanggulangannya. Info Teknis EBONI, 11(1), 1–13.

Shuaib, M., Azam, N., Bahadur, S., Romman, M., Yu, Q., & Xuexiu, C. (2021). Variation and succession of microbial communities under the conditions of persistent heavy metal and their survival mechanism. Microbial Pathogenesis, 150. https://doi.org/10.1016/j.micpath.2020.104713

Smith, A. C., & Hussey, M. A. (2005). Gram Stain Protocols. In American Society for Microbiology. www.asmscience.org

Song, L., Zhou, J., Xu, X., Na, M., Xu, S., Huang, Y., Zhang, J., Li, X., & Zheng, X. (2024). Inoculation of cadmium-tolerant bacteria to regulate microbial activity and key bacterial population in cadmium-contaminated soils during bioremediation. Ecotoxicology and Environmental Safety, 271. https://doi.org/10.1016/j.ecoenv.2024.115957

Sune, D., Rydberg, H., Augustinsson, Å. N., Serrander, L., & Jungeström, M. B. (2020). Optimization of 16S rRNA gene analysis for use in the diagnostic clinical microbiology service. Journal of Microbiological Methods, 170. https://doi.org/10.1016/j.mimet.2020.105854

Verdian, T., & Zulaika, E. (2015). Resistensi dan Viabilitas Bacillus S1, SS19 dan DA11 pada Medium yang Terpapar Logam Kadmium (Cd). Jurnal Sains Dan Seni ITS, 4(2), E88–E90.

Wahyuni, Amaliah, R., Fadhel, M. Y., & Rezki, M. (2022). Kesesuaian Penggunaan Lahan dengan Pola Ruang di Daerah Aliran Sungai Tallo. Jurnal Hutan Dan Masyarakat, 14(2), 61–72.

Wang, F., Peng, L., Zhou, X., Zeng, Q., & Luo, S. (2021). Typical sources of Cd to paddy fields in different contaminated areas and their impacts on Cd accumulation in topsoil and rice in Changzhutan, China. Environmental Research, 193. https://doi.org/10.1016/j.envres.2020.110523

Wang, M., Chen, W., & Peng, C. (2016). Risk assessment of Cd polluted paddy soils in the industrial and township areas in Hunan, Southern China. Chemosphere, 144, 346–351. https://doi.org/10.1016/j.chemosphere.2015.09.001

Wang, P., Chen, H., Kopittke, P. M., & Zhao, F. J. (2019). Cadmium contamination in agricultural soils of China and the impact on food safety. In Environmental Pollution (Vol. 249, pp. 1038–1048). Elsevier Ltd. https://doi.org/10.1016/j.envpol.2019.03.063

Wu, H., Wu, Q., Wu, G., Gu, Q., & Wei, L. (2016). Cd-resistant strains of B. cereus S5 with endurance capacity and their capacities for cadmium removal from cadmium-polluted water. PLoS ONE, 11(4). https://doi.org/10.1371/journal.pone.0151479

Yin, K., Wang, Q., Lv, M., & Chen, L. (2019). Microorganism remediation strategies towards heavy metals. In Chemical Engineering Journal (Vol. 360, pp. 1553–1563). Elsevier B.V. https://doi.org/10.1016/j.cej.2018.10.226

Yu, X., Zhao, J. T., Liu, X., Sun, L. X., Tian, J., & Wu, N. (2021). Cadmium Pollution Impact on the Bacterial Community Structure of Arable Soil and the Isolation of the Cadmium Resistant Bacteria. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.698834

Zou, M., Zhou, S., Zhou, Y., Jia, Z., Guo, T., & Wang, J. (2021). Cadmium pollution of soil-rice ecosystems in rice cultivation dominated regions in China: A review. In Environmental Pollution (Vol. 280). Elsevier Ltd. https://doi.org/10.1016/j.envpol.2021.116965

Zulfiqar, U., Haider, F. U., Maqsood, M. F., Mohy-Ud-Din, W., Shabaan, M., Ahmad, M., Kaleem, M., Ishfaq, M., Aslam, Z., & Shahzad, B. (2023). Recent Advances in Microbial-Assisted Remediation of Cadmium-Contaminated Soil. In Plants (Vol. 12, Issue 17). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/plants12173147