Developmental Anatomy of Anther in the Red Dragon Fruit (Hylocereus polyrhizus Britton & Rose)
Main Article Content
Abstract
The developmental anatomy of the anther in Hylocereus polyrhizus (red dragon fruit) was examined to elucidate the sequential processes of microsporogenesis and microgametogenesis that underlie pollen formation. Flower buds were sampled at five developmental stages (1-5) and analyzed histologically using paraffin embedding and safranin staining. Anther length increased progressively by 96% from stages 1 to 4 and plateaued before anthesis, indicating growth cessation before pollen maturation. The anther wall followed a dicotyledonous pattern, comprising the epidermis, endothecium, middle layer, and tapetum. Early stages featured archesporial differentiation into primary parietal and sporogenous cells, followed by the formation of secondary parietal and sporogenous layers. The endothecium developed fibrous thickenings, while the binucleate, secretory tapetum provided nutrients for developing microspores and degenerated at maturity. Microsporogenesis proceeded from microspore mother cells to tetrads and solitary microspores, culminating in tricellular pollen grains at anthesis. These findings demonstrate that anther development in H. polyrhizus conforms to the typical dicotyledonous type, with characteristic features such as a secretory tapetum and fibrous endothecium. The results provide essential anatomical insight to support breeding programs, artificial pollination strategies, and reproductive biology studies of this economically valuable cactus species.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
The copyright of the received article shall be assigned to the journal as the publisher of the journal. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to the published articles. Authors are allowed to use their articles for any legal purposes deemed necessary without written permission from the journal with an acknowledgment of initial publication to this journal.
The work under license Creative Commons Attribution-ShareAlike 4.0 International License.
References
Chávez-Vela, N. A., Reyes, A., & Tel-Zur, N. (2008). Androgenesis in the vine cacti Selenicereus and Hylocereus. Plant Cell, Tissue and Organ Culture, 96, 191–199. https://doi.org/10.1007/s11240-008-9475-9
Cho, J. L. Y. (2021). Floral morphology and pollination process of red-fleshed dragon fruit (Hylocereus polyrhizus). Horticultural Science and Technology, 39(3), 277–293. https://doi.org/10.7235/HORT.20210025
Cho, J. L. Y., & Ding, P. (2022). Floral characteristics of red-fleshed dragon fruit (Hylocereus polyrhizus) grown under Malaysian climate. Acta Horticulturae, 1342, 143–150. https://doi.org/10.17660/ActaHortic.2022.1342.20
Etfanti, S., & Suharyanto, E. (2018). Perkembangan anatomis bunga buah naga merah (Hylocereus polyrhizus) [Undergraduate thesis, Universitas Gadjah Mada]. UGM Repository. https://etd.repository.ugm.ac.id/home/detail_pencarian/153936
Kriswiyanti, E. (2013). The generative reproductive characteristics of red dragon fruit (Hylocereus polyrhizus). Jurnal Biologi Udayana, 16(1), 13–19. https://ojs.unud.ac.id/index.php/bio/article/view/5702
Tel-Zur, N., et al. (2022). Breeding an underutilized fruit crop: A long-term program for Hylocereus. Plants, 11(12), 1614. https://doi.org/10.3390/plants11121614
Almeida, O. J. G., A. A. Sartori-Paoli & L. A. Souza. (2010). Flower morpho-anatomy in Epiphyllum phyllanthus (Cactaceae). Revista Mexicana de Biodiversidad. 81: 65- 80
Bhojwani, S. S., S. P. Bhatnagar, P.K. Dantu. (2015). The Embryology of Angiosperms. Sixth Edition. Vikas Publishing House Pvt Ltd. New Delhi, pp 14-65
Britton, N. & Rose, J.N. (1963). The Cactaceae: description and illustrations of plants of the cactus family, Volumes 1 and 2. Dover, New York, pp 183-185
Davies, P.J. (2010). Plant Hormones: Biosynthesis, Signal Transduction, Action. Springer Science+Business Media. Dordrecht. London, p 179
Gotelli, M.M., A. Scambato, B. Galati, & R. Kiesling. (2009). Pollen Development and Morphology in Four Species of Pterocactus (Cactaceae). Annales Botanici Fennici. 46 (5): 409-415
Nugroho, L.H., Purnomo, dan I. Sumardi. 2012. Struktur dan Perkembangan Tumbuhan. Penebar Swadaya. Jakarta, hal 120-156
Papini, A., A. Mosti, & W. G. V. Doorn. (2014). Classical macroautophagy in Lobivia rauschii (Cactaceae) and possible plastidial autophagy in Tillandsia albida (Bromeliaceae) tapetum cells. Protoplasma. 251:719-725
Pierik, R.L.M. 1997. In Vitro Culture of Higher Plant. Springer Science+Business Media. Dordrecht. London, p 45
Strittmatter, L. I., V. Negron-Ortiz, & R. J. Hickey. (2002). Subdioecy In Consolea spinosissima (Cactaceae): Breeding System and Embryological Studies. American Journal of Botany. 89(9) : 1373-1387
Srivastava, L. M., 2002. Plant Growth and Development: Hormones and the Environment. Academic Press. USA, p. 5
Willey, N. (2016). Environmental Plant Physiology. Garland Science, Taylor & Francis Group, LLC. United Kingdom, p 8.
