Identifikasi Senyawa Aktif Ekstrak Daun Tembakau (Nicotiana tabacum L.) Sebagai Antibakteri Terhadap S. aureus (ATCC 25923)

Anis Uswatun Khasanah*  -  UIN Sultan Maulana Hasanuddin Banten, Indonesia
Sri Juni Nastiti  -  Fakultas Biologi Universitas Gadjah Mada, Indonesia

(*) Corresponding Author

Tobacco leaf contains bioactive compounds as antibacterial. Staphylococcus aureus is a pathogenic bacteria causing several infection  diseases. The purpose of this study was to identify the active compounds group that have antibacterial against and determine the optimum  concentration which was able to inhibit S.aureus ATCC 25923 activity in tobacco leaf extract. The assay of inhibitory activity of tobacco leaf extract was carried out qualitatively using diffusion disc method at various concentration of tobacco leaf extract; 40, 50, 60, 70, 80, 90, and 100%. Gradual maceration (M2) and total maceration were used to perform the extraction process, using methanol 70% and etanol 96% as the solvent. Thin Layer Chromatografi (TLC) assay were carried out to identify the bioactive compounds. The results showed that the methanol (M2) and etanol (E) extract of tobacco leaf had antibacterial avtivity against S.aureus. Their bactericidal activity (inner diameter of inhibition) was 12,5 mm, and bacteriostatic (outer diameter inhibition) was 20 mm. The optimum concentration of antibacterial methanol extract was 50%, and the optimum concentration of antibacterial etanol extract was 60%. It was found that the antibacterial compound was detected as flavonoid and terpenoid.

Keywords: Antibacterial; Tobacco leaf; Staphylococcus aureus ATCC 25923

  1. Akhtar, N. (2018). Phytochemical analysis and comprehensive evaluation of antimicrobial and antioxidant properties of 61 medicinal plant species. Arabian Journal of Chemistry, 11(8), 1223–1235. https://doi.org/10.1016/j.arabjc.2015.01.013
  2. Akkou, M., Bentayeb, L., Ferdji, K., Medrouh, B., Bachtarzi, M. A., Ziane, H., Kaidi, R., & Tazir, M. (2018). Phenotypic characterization of Staphylococci causing mastitis in goats and microarray-based genotyping of Staphylococcus aureus isolates. Small Ruminant Research, 169, 29–33. https://doi.org/10.1016/j.smallrumres.2018.10.015
  3. Chem, J. (2017). Isolasi, Identifikasi, Uji Aktivitas Senyawa Flavonoid Sebagai Antibakteri Dari Daun Mangga. Indonesian Journal of Chemical Science, 6(2), 91–96.
  4. Jaberian, H., Piri, K., & Nazari, J. (2013). Phytochemical composition and in vitro antimicrobial and antioxidant activities of some medicinal plants. Food Chemistry, 136(1), 237–244. https://doi.org/10.1016/j.foodchem.2012.07.084
  5. Jawetz, E., Melnick J.L. and Adelberg, E.A. 2005. Mikrobiologi untuk Profesi Kesehatan. Edisi 14.Jakarta : Penerbit EGC. Hlm 801-806, 438
  6. Koo, H., Hayacibara, M.F., Schobel, B.D., Cury, J.A., Rosalen, P.A., Park, Y.K., Vacca-Smith, A.M., dan Bowen, W.H., 2003, Inhibition of Streptococcus mutans Biofilm Accumulation and Polisaccharide Production by Apigenin and tt-Farnesol, Journal of Antimicrobial Chemotherapy, 52, 782-789.
  7. Mustopa, A. Z., Budiarto, B. R., & Tarman, K. (2016). Antibacterial Activity of Extracellular Protease Isolated From an Algicolous Fungus Xylaria psidii KT30 Against Gram-Positive Bacteria. 23, 73–78. https://doi.org/10.1016/j.hjb.2016.06.005
  8. Nguyen, T. D., Riordan-Short, S., Dang, T. T. T., O’Brien, R., & Noestheden, M. (2020). Quantitating terpenes / terpenoids and nicotine in plant materials and vaping products using high-temperature headspace
  9. gas chromatography–mass spectrometry. In Comprehensive Analytical Chemistry (1st ed.). Elsevier B.V. https://doi.org/10.1016/bs.coac.2020.04.006
  10. Prescott, L M., John P. H., and Donal A. K. 1999. Microbiology. Forth edition. Mc Graw Hill Company. North America. 113 pp
  11. Ruiz-Rodriguez, Bronze Maria-Rosario, Nunes da Ponte, M. 2007. Supercritical Fluid Extraction of Tobacco Leaves: A preliminary Study on The Extraction of Solanesol. Journal of Supercritical Fluids 45 (2008) 171-176
  12. Sastya, S., Kumar, R. R., & Vatsya, S. (2017). Evaluation of Anthelmintic Efficacy of Nicotiana tabacum against Gastrointestinal Nematodes of Goats. 6(10), 780–789.
  13. Schorderet, S., Kaminski, K. P., Perret, J., Leroy, P., Mazurov, A., Peitsch, M. C., Ivanov, N. V, & Hoeng, J. (2019). Antiparasitic properties of leaf extracts derived from selected Nicotiana species and Nicotiana tabacum varieties. Food and Chemical Toxicology, 132(July), 110660. https://doi.org/10.1016/j.fct.2019.110660
  14. Seidel, V. 2006. Natural Product Isolation 2nd edition. Humana Press Inc. new Jarsey, pp 27-37.
  15. Siegel, S. D., Liu, J., & Ton-that, H. (n.d.). ScienceDirect Biogenesis of the Gram-positive bacterial cell envelope. Current Opinion in Microbiology, 34, 31–37. https://doi.org/10.1016/j.mib.2016.07.015
  16. Tang, C., Chen, J., Zhang, L., Zhang, R., Zhang, S., Ye, S., Zhao, Z., & Yang, D. (2020). International Journal of Medical Microbiology Exploring the antibacterial mechanism of essential oils by membrane permeability , apoptosis and bio fi lm formation combination with proteomics analysis against methicillin-resistant staphylococcus aureus. International Journal of Medical Microbiology, 310(5), 151435. https://doi.org/10.1016/j.ijmm.2020.151435

Open Access Copyright (c) 2021 Al-Hayat: Journal of Biology and Applied Biology
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
apps