Identifikasi Senyawa Aktif Ekstrak Daun Tembakau (Nicotiana tabacum L.) Sebagai Antibakteri Terhadap S. aureus (ATCC 25923)
DOI:
https://doi.org/10.21580/ah.v4i1.6320Keywords:
Antibacterial, Tobacco leaf, Staphylococcus aureus ATCC 25923Abstract
Tobacco leaf contains bioactive compounds as antibacterial. Staphylococcus aureus is a pathogenic bacteria causing several infection diseases. The purpose of this study was to identify the active compounds group that have antibacterial against and determine the optimum concentration which was able to inhibit S.aureus ATCC 25923 activity in tobacco leaf extract. The assay of inhibitory activity of tobacco leaf extract was carried out qualitatively using diffusion disc method at various concentration of tobacco leaf extract; 40, 50, 60, 70, 80, 90, and 100%. Gradual maceration (M2) and total maceration were used to perform the extraction process, using methanol 70% and etanol 96% as the solvent. Thin Layer Chromatografi (TLC) assay were carried out to identify the bioactive compounds. The results showed that the methanol (M2) and etanol (E) extract of tobacco leaf had antibacterial avtivity against S.aureus. Their bactericidal activity (inner diameter of inhibition) was 12,5 mm, and bacteriostatic (outer diameter inhibition) was 20 mm. The optimum concentration of antibacterial methanol extract was 50%, and the optimum concentration of antibacterial etanol extract was 60%. It was found that the antibacterial compound was detected as flavonoid and terpenoid.
Downloads
References
Akhtar, N. (2018). Phytochemical analysis and comprehensive evaluation of antimicrobial and antioxidant properties of 61 medicinal plant species. Arabian Journal of Chemistry, 11(8), 1223–1235. https://doi.org/10.1016/j.arabjc.2015.01.013
Akkou, M., Bentayeb, L., Ferdji, K., Medrouh, B., Bachtarzi, M. A., Ziane, H., Kaidi, R., & Tazir, M. (2018). Phenotypic characterization of Staphylococci causing mastitis in goats and microarray-based genotyping of Staphylococcus aureus isolates. Small Ruminant Research, 169, 29–33. https://doi.org/10.1016/j.smallrumres.2018.10.015
Chem, J. (2017). Isolasi, Identifikasi, Uji Aktivitas Senyawa Flavonoid Sebagai Antibakteri Dari Daun Mangga. Indonesian Journal of Chemical Science, 6(2), 91–96.
Jaberian, H., Piri, K., & Nazari, J. (2013). Phytochemical composition and in vitro antimicrobial and antioxidant activities of some medicinal plants. Food Chemistry, 136(1), 237–244. https://doi.org/10.1016/j.foodchem.2012.07.084
Jawetz, E., Melnick J.L. and Adelberg, E.A. 2005. Mikrobiologi untuk Profesi Kesehatan. Edisi 14.Jakarta : Penerbit EGC. Hlm 801-806, 438
Koo, H., Hayacibara, M.F., Schobel, B.D., Cury, J.A., Rosalen, P.A., Park, Y.K., Vacca-Smith, A.M., dan Bowen, W.H., 2003, Inhibition of Streptococcus mutans Biofilm Accumulation and Polisaccharide Production by Apigenin and tt-Farnesol, Journal of Antimicrobial Chemotherapy, 52, 782-789.
Mustopa, A. Z., Budiarto, B. R., & Tarman, K. (2016). Antibacterial Activity of Extracellular Protease Isolated From an Algicolous Fungus Xylaria psidii KT30 Against Gram-Positive Bacteria. 23, 73–78. https://doi.org/10.1016/j.hjb.2016.06.005
Nguyen, T. D., Riordan-Short, S., Dang, T. T. T., O’Brien, R., & Noestheden, M. (2020). Quantitating terpenes / terpenoids and nicotine in plant materials and vaping products using high-temperature headspace
gas chromatography–mass spectrometry. In Comprehensive Analytical Chemistry (1st ed.). Elsevier B.V. https://doi.org/10.1016/bs.coac.2020.04.006
Prescott, L M., John P. H., and Donal A. K. 1999. Microbiology. Forth edition. Mc Graw Hill Company. North America. 113 pp
Ruiz-Rodriguez, Bronze Maria-Rosario, Nunes da Ponte, M. 2007. Supercritical Fluid Extraction of Tobacco Leaves: A preliminary Study on The Extraction of Solanesol. Journal of Supercritical Fluids 45 (2008) 171-176
Sastya, S., Kumar, R. R., & Vatsya, S. (2017). Evaluation of Anthelmintic Efficacy of Nicotiana tabacum against Gastrointestinal Nematodes of Goats. 6(10), 780–789.
Schorderet, S., Kaminski, K. P., Perret, J., Leroy, P., Mazurov, A., Peitsch, M. C., Ivanov, N. V, & Hoeng, J. (2019). Antiparasitic properties of leaf extracts derived from selected Nicotiana species and Nicotiana tabacum varieties. Food and Chemical Toxicology, 132(July), 110660. https://doi.org/10.1016/j.fct.2019.110660
Seidel, V. 2006. Natural Product Isolation 2nd edition. Humana Press Inc. new Jarsey, pp 27-37.
Siegel, S. D., Liu, J., & Ton-that, H. (n.d.). ScienceDirect Biogenesis of the Gram-positive bacterial cell envelope. Current Opinion in Microbiology, 34, 31–37. https://doi.org/10.1016/j.mib.2016.07.015
Tang, C., Chen, J., Zhang, L., Zhang, R., Zhang, S., Ye, S., Zhao, Z., & Yang, D. (2020). International Journal of Medical Microbiology Exploring the antibacterial mechanism of essential oils by membrane permeability , apoptosis and bio fi lm formation combination with proteomics analysis against methicillin-resistant staphylococcus aureus. International Journal of Medical Microbiology, 310(5), 151435. https://doi.org/10.1016/j.ijmm.2020.151435
Downloads
Published
Issue
Section
License
The copyright of the received article shall be assigned to the journal as the publisher of the journal. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to the published articles. Authors are allowed to use their articles for any legal purposes deemed necessary without written permission from the journal with an acknowledgment of initial publication to this journal.
The work under license Creative Commons Attribution-ShareAlike 4.0 International License.