Keanekaragaman Serangga Pengunjung Tanaman Cabai Rawit (Capsicum annuum L.) di Wiyoro, Bantul

ichsan luqmana Indra Putra*  -  Program Studi Biologi, Fakultas Sains dan Teknologi Terapan, Universitas Ahmad Dahlan, Indonesia

(*) Corresponding Author

Chili is one of the plants that’s planted Indonesian. Excessive use of chemical insecticides in chili planters can cause damage to ecosystems for example reducing in biodiversity. This study aims to determine the diversity and abundance of insects found in chili plants in Banguntapan, Bantul. Sampling uses indirect capture, insect nets, yellow pan traps (YPT), and pitfalls. Insect nets were swung along vertically in chili beds. 15 pieces of YPT and pitfalls were installed for each trap. Sampling was done 8 times in 2 months. The results were order that had most species was Hymenoptera (83 species), while the least were Blattaria, Dermaptera, Diplura, Strepsiptera, and Trombidiformes, each 1 species. The order that has the most abundance individuals was Diptera with 2939 individuals. The species that has the highest abundance was Paratrechina longicornis (Hym: Formicidae) with 1071 individuals. The Shanon-Wiener Index value obtained is 1.883621, which classified as medium diversity.

Keywords : Capsicum annuum; Diptera; Hymenoptera; Paratrechina longicornis; Shanon-Wiener

  1. Abram, P. K., Brodeur, J., Urbaneja, A., & Tena, A. (2018). Nonreproductive Effects of Insect Parasitoids on Their Hosts. Annual Review of Entomology, 64(1), 259–276.
  2. Bellamy, A. S., Svensson, O., van den Brink, P. J., Gunnarsson, J., & Tedengren, M. (2018). Insect community composition and functional roles along a tropical agricultural production gradient. Environmental Science and Pollution Research, 25(14), 13426–13438.
  3. Choate, P. M. (1999). Introduction to the Identification of Beetles (Coleoptera). North, 23–33.
  4. Classen, A. T., DeMarco, J., Hart, S. C., Whitham, T. G., Cobb, N. S., & Koch, G. W. (2006). Impacts of herbivorous insects on decomposer communities during the early stages of primary succession in a semi-arid woodland. Soil Biology and Biochemistry, 38(5), 972–982.
  5. Devescovi, F., Bachmann, G. E., Nussenbaum, A. L., Viscarret, M. M., Cladera, J. L., & Segura, D. F. (2017). Effects of superparasitism on immature and adult stages of Diachasmimorpha longicaudata Ashmead (Hymenoptera: Braconidae) reared on Ceratitis capitata Wiedemann (Diptera: Tephritidae). Bulletin of Entomological Research, (April), 1–12.
  6. Djieto-Lordon, C., Heumou, C., Elono Azang, P., Alene, C., Ngueng, A., & Ngassam, P. (2014). Assessment of pest insects of Capsicum annuum L.1753 (Solanaceae) in a cultivation cycle in Yaoundé. International Journal of Biological and Chemical Sciences, 8(2), 621.
  7. Ekenma, J. A., Gregory, E. O., Felicia, E., Gerald, N. A., Michael, U., & Chukwuemeka, E. (2018). A survey of the insect pests and farmers practices in the cropping of yellow pepper Capsicum annuum Linnaeus in Enugu State of Eastern Nigeria. African Journal of Agricultural Research, 13(15), 742–752.
  8. Feener Jr, D. H., & Brown, B. V. (2002). Diptera As Parasitoids. Annual Review of Entomology, 42(1), 73–97.
  9. Forbes, A. A., Bagley, R. K., Beer, M. A., Hippee, A. C., & Widmayer, H. A. (2018). Quantifying the unquantifiable: Why Hymenoptera, not Coleoptera, is the most speciose animal order. BMC Ecology, 18(1), 1–11.
  10. Gołębiowski, M. (2016). The use of insecticides to control insect pests. Invertebrate Survival Journal, 13, 210–220.
  11. Groner, M. L., & Relyea, R. A. (2011). A tale of two pesticides: How common insecticides affect aquatic communities. Freshwater Biology, 56(11), 2391–2404.
  12. Hadi, M., & Aminah. (2012). Keragaman serangga dan perannya di ekosistem sawah. Jurnal Sains Dan Matematika, Vol. 20, pp. 54–57.
  13. Help, C. H. R., Herman, P. M. J., & Soetaert, K. (1998). Indices of diversity and evenness. Océanis, 24(2459), 61–87.
  14. Hidayah, N. (2017). Pengaruh Penyuluhan Terhadap Perilaku Masyarakat Tentang Kandungan Dan Dampak Pestisida Pada Sayuran Segar. 2(1), 23–29.
  15. Jaapar, M. F., Jajuli, R., Mispan, M. R., & Ghani, I. A. (2018). Foraging behavior of stingless bee Heterotrigona itama (Cockerell, 1918) (Hymenoptera: Apidae: Meliponini). AIP Conference Proceedings, 1940(April).
  16. Jankielsohn, A. (2018). The Importance of Insects in Agricultural Ecosystems. Advances in Entomology, 06(02), 62–73.
  17. Jensen, K., Mayntz, D., Toft, S., Clissold, F. J., Hunt, J., Raubenheimer, D., & Simpson, S. J. (2012). Optimal foraging for specific nutrients in predatory beetles. Proceedings of the Royal Society B: Biological Sciences, 279(1736), 2212–2218.
  18. Lawrence, J. F., Ślipiński, A., Seago, A. E., Thayer, M. K., Newton, A. F., & Marvaldi, A. E. (2011). Phylogeny of the Coleoptera Based on Morphological Characters of Adults and Larvae. Annales Zoologici, 61(1), 1–217.
  19. Ndakidemi, B., Mtei, K., & Ndakidemi, P. A. (2016). Impacts of Synthetic and Botanical Pesticides on Beneficial Insects. Agricultural Sciences, 07(06), 364–372.
  20. Oldroyd, H. (1954). Handbooks for the identification of British Insects; Diptera. Royal Entomological Society of London, 9(1), 52.
  21. Pimentel, D., McLaughlin, L., Zepp, A., Lakitan, B., Kraus, T., Kleinman, P., … Selig, G. (1993). Environmental and economic effects of reducing pesticide use in agriculture. Agriculture, Ecosystems and Environment, 46(1–4), 273–288.
  22. Saeed, R., Razaq, M., & Hardy, I. C. W. (2015). The importance of alternative host plants as reservoirs of the cotton leaf hopper, Amrasca devastans, and its natural enemies. Journal of Pest Science, 88(3), 517–531.
  23. Sanjaya, Y., & Dibiyantoro, A. L. H. (2012). ( Capsicum Annuum ) Yang Diberi Pestisida Sintetis Versus Biopestisida Racun Laba-Laba ( Nephila Sp . ). J.HPT Tropika, 12(2), 192–199.
  24. Silva, A. G., Pinto, R. S., Contrera, F. A. L., Albuquerque, P. M. C., & Rêgo, M. M. C. (2014). Foraging distance of Melipona subnitida Ducke (Hymenoptera: Apidae). Sociobiology, 61(4), 494–501.
  25. Sirot, E., Ploye, H., & Bernstein, C. (1997). State dependent superparasitism in a solitary parasitoid: Egg load and survival. Behavioral Ecology, 8(2), 226–232.
  26. Skuhravá, M., Martinez, M., & Roques, A. (2010). Diptera. Chapter 10. BioRisk, 4(2), 553–602.
  27. Souza, I. L., Tomazella, V. B., Santos, A. J. N., Moraes, T., & Silveira, L. C. P. (2018). Parasitoids diversity in organic Sweet Pepper (Capsicum annuum) associated with Basil (Ocimum basilicum) and Marigold (Tagetes erecta ). Brazilian Journal of Biology, 79(4), 603–611.
  28. Thakur, K. B. A. S. V. S. P. S. (2018). Effect of plant nutrition in insect pest management: A review. Journal of Pharmacognosy and Phytochemistry, 7(4), 2737–2742.
  29. Ulrich, I. (2010). Population size and mobility of Cicindela maritima Dejean , 1822 ( Coleoptera : Carabidae ) 1. 1822, 1–6.
  30. Xu, H., & Turlings, T. C. J. (2018). Plant Volatiles as Mate-Finding Cues for Insects. Trends in Plant Science, 23(2), 100–111.
  31. Zang, L. S., Liu, T. X., & Wan, F. H. (2011). Reevaluation of the value of autoparasitoids in biological control. PLoS ONE, 6(5), 1–8.

Open Access Copyright (c) 2020 Al-Hayat: Journal of Biology and Applied Biology
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.