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A B S T R A C T 

Data is the primary source to scaffold physics teaching and learning for teachers and 
students, mainly reported through in-class assessment. Machine learning (ML) is an 
axis of artificial intelligence (AI) study that immensely attracts the development of 
physics education research (PER). ML is built to predict students’ learning that can 
support students’ success in an effective physics achievement. In this paper, two ML 
algorithms, logistic regression and random forest, were trained and compared to 
predict students’ achievement in high school physics (N = 197). Data on students’ 
achievement was harvested from in-class assessments administered by a physics 
teacher regarding knowledge (cognitive) and psychomotor during the 2020/2021 
academic year. Three assessment points of knowledge and psychomotor were 
employed to predict students’ achievement on a dichotomous scale on the final term 
examination. Combining in-class assessment of knowledge and psychomotor, we 
could discover the plausible performance of students’ achievement prediction using 
the two algorithms. Knowledge assessment was a determinant in predicting high 
school physics students’ achievement. Findings reported by this paper recommended 
open room for the implementation of ML for educational practice and its potential 
contribution to supporting physics teaching and learning. 
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Introduction 

Since the emergence of the integration of information 
and communication technology in physics learning, 
educational institutions and academic processes have 
been sources of complex and large digital data; not 
only data collected through the class assessment 
process but learning channeled through the learning 
management system is one channel for collecting 
learning data that can be produced at any time and is 
large (Santoso et al., 2022). The emergence of data of 
this type and large size can be used to support learning, 
as attempted by the Educational Data Mining (EDM) 
and Learning Analytics (LA) research groups (Santoso 
& Munawanto, 2020). These two groups were created 
so that we can be more aware of the existence of data 

in the educational process. EDM and LA were born 
when data was a potential resource to be addressed in 
the current era.   

Regarding the functions of EDM and LA, artificial 
intelligence (AI) technology is the forerunner to the 
birth of these two research groups (Fynn et al., 2022). 
AI studies have created predictive technology 
processed through machine learning (ML) for several 
purposes, including education (Leitner et al., 2017). 
One of the ML algorithms' analytical tasks is analyzing 
state predictions beyond model training ((Shafiq et al., 
2022; Albreiki et al., 2021). ML algorithms can learn 
patterns from extensive training data to provide 
predictions to support learning decisions (Romero & 
Ventura, 2020). Although the application of ML in 
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physics education is still relatively new, several studies 
predicting physics learning achievement have been 
carried out since 2019 (Aikenhead, 2023; Lin et al., 
2023). The results of the ML study report some 
success in supporting physics learning, but further 
studies still need to be carried out. 

Most ML models built by physics education 
researchers are random forests and logistic regression 
as tested. Previous researchers could predict student 
learning achievement with an accuracy of up to 80% 
using these two algorithms. Teachers can use this 
information as feedback that can be given to students 
to support student learning (Atmam & Mufit, 2023; 
Ndoa & Anastasia, 2022). According to the 
constructivist approach, effective physics learning 
provides students with independent learning, which is 
supported by the teacher's activeness in monitoring 
learning, which the results of ML predictions can 
generate. 

The research presented in this article aims to explore 
assessment data collected by teachers to predict 
student physics learning achievement. The data is 
processed to train an ML model based on logistic 
regression and random forest algorithms, as has been 
done by many physics education researchers above. 
The prediction performance produced in the two ML 
models was then evaluated and compared to the most 
optimal one. 
To guide the investigation, three research questions 
were posed as follows. 
Problem 1. How is the prediction performance of 
physics learning outcomes produced by the logistic 
regression model? 
Problem 2. How is the prediction performance of 
physics learning outcomes produced by the random 
forest model? 
Problem 3. What does data contribute most to 
predicting physics learning outcomes? 
One of the implications of this article aims to open a 
discussion space in physics education to support 
physics learning through ML predictive technology. 
 
Machine Learning 

Machine learning (ML) artificial intelligence (AI) is a 
branch that focuses on utilizing data and algorithms to 
imitate how a knowledge machine constantly improves 
its capabilities. ML differs from statistical approaches 
that rely heavily on probability theory for hypothesis 
testing. The terms often used in ML studies are 
training and testing that do not aim to generalize to a 
population. However, ML is trained to make 
predictions from input data not used in model training 
(Aikenhead, 2023). 

Two divisions of ML learning types are most widely 
cited in the literature, namely unsupervised and 
supervised (Susilawati et al., 2021)—the difference 
between the two lies in the labels or targets available in 
the training dataset. Unsupervised algorithms are more 
exploratory because interpretation of the results still 
requires the role of the model user. An example of an 
unsupervised ML algorithm is clustering. In contrast, 
supervised ML methods have predetermined targets 
before model training. ML is trained to predict one of 
the labels contained in the target variable. Several tasks 
are included in the supervised learning type (Bloor & 
Santini, 2023). One of them that is often applied in 
education is classification. The topic of classification, 
namely the prediction of student learning, is the basis 
for the birth of the field of ML studies in the field of 
education, namely educational data mining (EDM) and 
learning analytics (LA). Even though they have slightly 
different terminology, there is a common goal of 
supporting student learning. 

Several ML algorithms are often used to predict 
student learning achievement. A systematic review of 
the history of algorithms that have been used has been 
synthesized, such as decision trees, random forests, k-
nearest neighbors, support vector machines, naive 
Bayes, logistic regression, and artificial neural 
networks (Sekeroglu et al., 2021). Due to the 
limitations of the study focus addressed in this article, 
only two ML algorithms as the basis for developing 
ML models were used in predicting learning 
achievement reported in this article. 
 
Logistic Regression 
Although its name is mentioned in the term 
‘regression,’ which is another task in the supervised 
learning type; logistic regression is mainly used for 
tasks. This algorithm has the same properties as linear 
regression. The difference lies in using the dependent 
variable in categorical form, where the sigmoid 
function is used to classify the class of the dependent 
variable. 
 
Random Forest 
This model is one of a family of decision tree 
algorithms for carrying out classification tasks on 
categorical data. Random forest is a model from a 
group of tree-based algorithms that grows several trees 
(decision trees) to determine classification decisions 
for a class of targets as an ensemble. This method is 
also known as optimization of decision trees by 
considering the regression average of trees that grow 
as an ensemble. 
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Methods 

Research Design 

This research explores training two types of ML 
models using the framework suggested by The Cross 
Interprofessional Standard Data Mining Process 
(CRISP-DM) in data science research (Chapman, 
2000). Six stages structure this framework, illustrated 
in Figure 1. 

Figure 1 
Work Cycle of Data Science Research According To CRISP-DM 

 

 
 
1. Business understanding.  

The purpose of applying ML in this research is to 
perform classification tasks. Classification tasks 
are one of the most researched topics by EDM 
and LA groups (Sekeroglu et al., 2021). Prediction 
of students' physics learning achievement is an 
example of a classification task in ML research. 

2. Data understanding.  
Two types of data obtained through classroom 
assessments are used to predict physics learning 
outcomes—namely, teacher assessment data on 
aspects of knowledge and skills by the Indonesian 
physics curriculum syllabus. The class assessment 
data in this research comes from recorded 
academic data obtained by a teacher from one of 
the state schools in Indonesia in the 2020/2021 
academic year. Student assessments are measured 
using assessment instruments developed and 
validated by teachers based on the class X high 
school physics curriculum reference by the 
current COVID-19 pandemic conditions. There 
are three essential physics competencies that 
teachers focus on during this period, including 
the nature of physics, measurement, and vectors. 

3. Data preparation.  
Based on data from physics teachers, 197 
students are enrolled in physics learning. Students 
are divided into five classes X from the science 
department. However, there are cases where 
students do not take part in the assessments 
carried out by the teacher even though the 
teacher has carried out additional assessment 
sessions for the students. However, there are still 
students who cannot join for several reasons. The 
teacher agreed that a grade of zero should be 
given in that case. Data that is ready to be saved 
in CSV format. 

4. Modeling.  
The next stage is training the ML model through 
logistic regression and random forest algorithms. 
The proportion of sharing 75% of training data 
and 25% of test data was chosen in this research. 
Modeling was carried out in R using several 
packages such as 'caret' (Hochberg et al., 2018), 
'randomForest,' 'lme4' (Bates et al., 2015), 
'caTools', 'pROC' (Starr et al., 2020), 'varSelRF', 
'pscl', 'MASS', as well as 'ggplot2', 'ggthemes', 
'RColorBrewer', 'Rmisc', and 'car' for data 
visualization purposes. 

5. Evaluation.  
The ML model that has been trained is then used 
to make predictions on the test data at this stage. 
The prediction performance of the ML model on 
the test data is then tabulated using the confusion 
matrix shown in Table 1. Several evaluation 
metrics are used in evaluating ML classification 
models based on the number calculated in the 
confusion matrix. Several evaluation metrics that 
are often used in ML studies predicting learning 
outcomes include accuracy, precision, sensitivity, 
specificity, F1-measure, and area under the curve 
(AUC) (Darling-Hammond et al., 2020), which 
are calculated based on the formula described in 
Equation 1 to Equation 6.  

Table 1 
Confusion Matrix 

 Actual+ Actual - 

Prediction + True positive (TP) False positive (FP) 
Prediction - False negative 

(FN) 
True negative 

(TN) 

 

Accuracy =
TP+TN

TP+TN+FP+FN
                      (1) 

Precision =
TP

TP+FP
                             (2) 

Sensitivity =
TP

TP+FN
                            (3) 
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Specificity =
TN

TN+FP
                             (4) 

F1-measure = 2 ∙
𝑝𝑟𝑒𝑠𝑖𝑠𝑖∙𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑠𝑖𝑠𝑖+𝑟𝑒𝑐𝑎𝑙𝑙
                   (5) 

 

Then, the 'stepAIC' function measures how 
important a variable (knowledge or skills) is in the 
logistic regression model and 'varImpPlot' for the 
random forest model. 

6. Deployment.  
In this research, this stage was not carried out 
because the study development process was still 
being carried out.  

 

Result and Discussions 

This research aims to train a prediction model for 
physics learning achievement with two algorithms: 
logistic regression (Problem 1) and random forest 
(Problem 2). A comparison of prediction performance 
between the two ML methods based on six evaluation 
metrics (accuracy, precision, sensitivity, specificity, F1-
measure, and AUC) is reported in Table 2. 

Six models have been drilled using logistic regression 
and random forest algorithms. The first step is 
establishing a baseline where the target variable 
(student learning achievement) is predicted as "1" or 
more from the minimum completeness during the 
final test. This model can be used as a comparison of 
the fifth model that was explored later. This baseline 
model detects the extent of model accuracy in the case 
of pure guessing. Both logistic regression and random 
forest show the same results in the first model. 

Then, another fifth model was created to follow the 
development of student learning in each basic physics 
competency. The last two models were created to 
measure the contribution of knowledge and skills 
aspects in predicting physics learning achievement 
with two ML algorithms. 

First, model accuracy increases as basic competency 
(BC) variables increase, reaching the highest peak at 
basic competency 3. However, model performance 
based on just one measure of accuracy can cause 
several problems (Zabriskie et al., 2019). Table 1 above 
is the confusion matrix produced when testing the ML 
model using test data. This contingency table will then 
calculate the six model evaluation metrics reported in 
Table 2. 

Second, the accuracy aspect must also be 
complemented by a measure of precision, namely the 
extent to which predictions have been successfully 
made from the total TP and FP predictions in the 
confusion matrix, as explained in equation (2) above. 
In contrast to the accuracy defined in measurement 
principles in physics, the precision described in 
equation (2) is explicitly used to see the proportion of 
accurate positive predictions (TP) to false optimistic 
predictions (FP). The larger the FP results, the smaller 
the precision. The baseline model did not find 
precision values because TP and FP were not found in 
this group. The model precision value in Table 2 
increases as the variables involved in the model 
increase. This result indicates good results because it 
corresponds to the most significant increase in 
accuracy values  at BC 3.

Table 2  
Performance of Predicting Physics Learning Achievement Using Logistic Regression and Random Forest 

Model 
Logistic Regression Random Forest 

Acc Prec Sens Spec F1 AUC Acc Prec Sens Spec F1 AUC 

Baseline 0.714 - 0.000 1.000 - 0.500 0.714 - 0.000 1.000 - 0.500 
BC 1 0.735 1.000 0.071 1.000 0.133 0.727 0.714 0.500 0.071 0.971 0.125 0.498 
BC 2 0.796 0.833 0.357 0.971 0.500 0.862 0.816 0.778 0.500 0.943 0.609 0.872 
BC 3 0.857 0.769 0.714 0.914 0.741 0.951 0.878 0.786 0.786 0.914 0.786 0.945 
K only 0.857 0.769 0.714 0.914 0.741 0.951 0.878 0.786 0.786 0.914 0.786 0.947 
S only 0.878 0.900 0.643 0.971 0.750 0.876 0.816 0.692 0.643 0.886 0.667 0.909 

Note: Acc : accuracy, Prec : precision, Sens : sensitivity, Spec : specificity, F1 : F1-measure, AUC : area under curve, BC : basic 
competence, K : Knowledge, S : Skills

The TP and TN cases are what we expect in studies 
predicting student learning achievement. An accurate 
prediction means there is a match between what is 
predicted and what happens. The good or bad 
performance predicted by the teacher during the 
learning process will correlate with student learning 
achievement at the end of learning (Chen et al., 2018; 

Le et al., 2022; Lu et al., 2021). However, cases of FP 
and FN may occur, and these two results are not 
expected to predict learning outcomes. Both cases can 
reduce students' learning motivation or lead to 
excessive self-confidence (Rubie-Davies, 2006; 
Shengnan et al., 2018). Therefore, considering only the 
TP and TN numbers as evaluated through the above 

https://ejournal.walisongo.ac.id/index.php/perj/index


Phy. Educ. Res. J. Vol. 5 No. 2 (2023), 97-106 
 
 

 

https://ejournal.walisongo.ac.id/index.php/perj/index 101 

 

accuracy and precision metrics can be problematic in 
their interpretation. We need to review other numbers 
that can understand the extent to which the model 
produces FP and FN results in predicting student 
physics learning achievement, namely through 
sensitivity and specificity measures. 

Motivation learning can be inaccurate, and prediction 
reports influence them. For example, the FN results in 
this case cause students who are high performers (+) 
to be predicted as students with poor learning 
achievement (-). Then, excessive self-confidence can 
be caused by FP prediction reports, which report that 
students who perform poorly (-) are instead predicted 
to have exemplary learning achievements (+) as has 
been found (Jeong et al., 2021; Vasalou et al., 2021), 
interpreting the metrics involving the number of FN 
and FP above must be adjusted to the context of 
predicting learning outcomes aimed in this research. 

Nevertheless, researchers argue that if FP creates 
higher student self-confidence, it should have a better 
impact on the physics learning process than the 
negative effect caused by the FN case. This argument 
can be supported by the self-regulated learner (SRL) 
theory proposed by (Kind, 2013; Zimmerman et al., 
2014). Positive feedback teachers give can increase 
students' self-confidence, so it impacts students' 
learning independence according to the SRL 
theoretical framework. Therefore, the case of 
predicting physics learning achievement should place 
more emphasis on prediction performance, which can 
minimize cases of FN, which can reduce students' 
confidence in learning physics. Sensitivity or recall 
measures are more suitable to pay attention to in cases 
where we want to minimize FN cases in our prediction 
results. The sensitivity value will be more significant 
when the FN value is smaller, or what we expect in 
Equation 3. Thus, reviewing a more considerable 
sensitivity value can be an option in evaluating the 
model with the most optimal prediction performance 
to predict student learning achievement. 

Third, BC 3 in Table 2 shows satisfactory prediction 
performance based on sensitivity. Using the skill 
aspect can have a sensitivity of 90% in the logistic 
regression algorithm. These results exceed those found 
by Zabriskie et al. (2019), whose model only achieved 
an accuracy level of 80% using only five variable 
assessment points. 

Fourth, specificity measures should be expected to be 
the opposite of those found by sensitivity. The focus 
on predicting learning outcomes is more aimed at 
minimizing expectation errors, which reduces student 
learning motivation in the case of FN. Based on Table 
2 above, we can see that BC 3 is a model with good 

performance relevant to the three previous measures: 
accuracy, precision, and sensitivity. 

Fifth, we will use the proposed F1 measure to improve 
the ML classification performance measures described 
by the four previously used measures. F1 measure can 
overcome uneven class distribution in the training 
dataset (Luo et al., 2021; Yang et al., 2017). For 
example, the predicted learning outcomes of students 
categorized as above the minimum completeness value 
or "1" are much higher than those classified as "0". 
Based on this measure, the BC3 model is still superior 
to the other two. The fifth measure offered by the F1 
measure further strengthens the argument provided by 
the four previous evaluation metrics that the more 
formative assessment variables are implemented, the 
more the prediction performance provided by ML will 
improve. 

Lastly is the area under curve (AUC), calculated via 
receiver operating characteristic (ROC). As a general 
rule, the higher the AUC, the more the ML prediction 
model can differentiate the class of each target. This 
means that the prediction model is increasingly 
accurate in predicting “1” as “1” or “0” as “0”. A good 
ML model has an AUC close to 1. Based on the results 
shown in Table 2, the BC 3 (vector material) model is 
the best model according to AUC. 

Based on the six measures reported by the evaluation 
metrics above, it can be concluded that the ML 
prediction model, which involves all formative 
assessments up to BC 3, is the most optimal in 
predicting student physics learning outcomes for both 
the logistic regression and random forest algorithms. 
Researchers found no significant difference in the 
prediction performance results reported by logistic 
regression and random forest. 

These results are from previous research they are 
ducted by (Semenikhina et al., 2020). The five 
assessment points found that they could produce 
prediction models with up to 80% accuracy with just 
three formative assessment data. These results have 
implications for learning purposes in that the 
predictive information provided by ML can become 
input or feedback that students can immediately use to 
improve learning. Simultaneously, teachers can also 
involve these results as a reflection of the learning they 
carry out in improving the effectiveness of physics 
learning. Through ML support, physics classes can be 
accepted by students more effectively. However, 
experimental studies must be conducted to test this 
conjecture. 

Apart from looking at the performance of ML 
prediction results between logistic regression and 
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random forest, this research also investigates what 
factors contribute most to the optimal prediction 
results. The last two models were deliberately created 
to look at each aspect of the assessment carried out by 
teachers, namely knowledge and skills. Based on the 
six evaluation metrics, the performance of the logistic 
regression and random forest models did not show 
significant differences when predicting student 
learning outcomes using aspects of knowledge or 
knowledge alone. Except that AUC reported a higher 
difference in logistic regression performance for the 
knowledge aspect than for the skill aspect. Even by 
using the features indicated by the knowledge aspect 
alone, the ML model can show performance in 
predicting learning outcomes with performance that is 
close to the AUC value shown by the BC 3 model. This 
initial information illustrates that the knowledge aspect 
still significantly contributes to the success of studying 
high school physics found in this research. 

This finding may be challenged by several opinions of 
previous researchers who suggested the importance of 
aspects of science process skills in physics learning, 
including what was found (Lin et al., 2023; Yang et al., 
2017), which still uses non-cognitive variables in its 
physics learning outcomes prediction model. 
However, this problem is outside the research 
question, which is the aim of this research. Critical 
studies with more comprehensive data are highly 
recommended to open up space for scientific 
discussion in the physics learning assessment field. 

The 'stepAIC' function is a method that is often used 
to select features in classification models. By what has 
been described in the method above, this function has 
been used to investigate the contribution of each 
feature involved in the model. In this presentation, 
'stepAIC' is applied to the BC 3 model because we 
have found that this model shows the most optimal 
performance in predicting physics learning 
achievement according to the previous discussion. 
However, it should be emphasized that 'stepAIC' is 
not intended to improve model fit to data or more 
optimal performance of ML prediction results. This 
function is used to simplify the model without 
significantly affecting the prediction performance of 
the ML model. Therefore, AIC only measures the 
amount of information loss when one of the features 
is omitted from the model. AIC is an abbreviation of 
Akaike Information Criteria. 
 
The final stage of the 'stepAIC' calculation concluded 
that three variables could be simplified for the KD3 
model with a lower AIC value of 76.56 from the 
previous one of 82.17 by involving all class assessment 
data including assessment of knowledge and skills 

aspects. These three variables are displayed in Table 3 
below, which displays the coefficients from the logistic 
regression equation, which has been simplified using 
the 'stepAIC' method. The explanation of the variable 
code 'P.PH3.1' is that the leftmost letter 'P' represents 
the knowledge aspect, then 'PH' means the method 
used, namely daily assessment, and '3.1' is the basic 
physics competency code that is being assessed by the 
teacher, namely the vector by Indonesian physics 
learning class X curriculum. We can see that all aspects 
of knowledge are reported from the three variables 
summarized by 'stepAIC'. These results can confirm 
and strengthen what was reported by the previous 
AUC measure that the knowledge aspect is a 
determining factor in predicting physics learning 
achievement in this study. In addition, basic vector 
competence is the most critical aspect in this case. 

Table 3 
Estimation Results of KD3 Logistic Regression Model Coefficient 
Parameters in Final 'stepAIC' 

Intercept P.PH3.1 P.TG3.1 P.TG2.1 

-11.1255 0.07216 0.07039 0.02768 

 
As a reinforcement of the AUC and stepAIC findings 
above, the 'varImpPlot' function is used in Figure 2 
above to extract the most essential variables in the 
model by visualizing the decrease in the mean of the 
accuracy metric and Gini index. Both relative report 
results that are not that different from the visualization 
of a horizontal bar chart arranged from the most 
critical variables to the least important. Based on 
previous findings, three knowledge variables were 
accurately reported as having the most significant 
contribution to model 3. Both AUC, stepAIC, and 
feature importance from random forest concluded 
that these three aspects were determining factors in 
this study's predicted results of physics learning 
achievement. 
The research results reported in this study have built 
two ML models to predict students' physics learning 
achievement with two algorithms that achieved 
entirely satisfactory performance. The next stage of 
this research is further testing the ML model through 
training data with different contexts or setting several 
hyperparameters of the logistic regression and random 
forest models, especially for data up to KD3, which is 
proven to perform best according to the above 
findings. Apart from that, deployment has not been 
carried out in this research, which should be an 
inseparable part of a data science project, according to 
CRISP-DM. The opportunity to continue the studies 
designed in this research is still open to carry out these 
stages or test other ML models. 

https://ejournal.walisongo.ac.id/index.php/perj/index


 
Figure 2 
Feature Importance of the KD3 Model with the Random Forest Algorithm 

 

Conclusions 

The development of technology and information-
based learning is a channel that can produce large and 
complex data. One data that physics teachers often 
measure is the class assessment reported to students at 
the end of learning in the knowledge and skills aspects 
of the Indonesian physics learning curriculum. In this 
research, two supervised ML models, namely logistic 
regression and random forest, have been trained using 
academic data from physics lessons conducted by a 
teacher. Six ML models were created by considering 
the development of student learning in the three 
essential physics competencies and investigating the 
contribution of each assessment data used to predict 
the most optimal physics learning achievement. 
Logistic regression and random forest did not show 
significant differences in performance to predict 
learning achievement in physics classes. The three 
assessment points of the basic physics competency of 
class X high school can be predicted optimally if there 
is an assessment of the final physics competency, 
namely vector. The knowledge assessment aspect is 
proven to substantially influence the performance of 
predicting physics learning outcomes using logistic 
regression and random forest. The results of this 
research can recommend one method teachers can use 
to design physics learning with student feedback. 
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