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ABSTRACT

Multicollinearity is a problem that must be addressed when using regression. Multicollinearity often
occurs in socioeconomic data, such as Per Capita Expenditure. Several relevant studies have shown
that Least Absolute Shrinkage and Selection Operator (LASSO) regression is a good method for
handling multicollinearity. Additionally, it produces the simple model. Meanwhile, the Least Angle
Regression (LAR) algorithm works effectively in model optimization, especially when
multicollinearity occurs in multiple variables. Therefore, this study aims to handle multicollinearity
with LAR LASSO regression in the specific case of per capita expenditure data in Wonosobo with
many variables experiencing multicollinearity. The result study is LAR LASSO regression
successfully eliminated two of the four predictor variables that exhibited multicollinearity by
reducing the regression coefficients on the two predictor variables to zero. The best regression
model obtained produces two significant coefficients so that Per Capita Expenditure in Wonosobo
was influenced by the Human Development Index and Average Years of Schooling.

Keywords: LASSO regression, LAR, multicollinearity, per capita expenditure.
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1. INTRODUCTION

Multicollinearity is a problem that often arises in regression analysis. Multicollinearity
occurs when the independent variables in the regression model have a strong linear relationship,
indicated by a high correlation coefficient or even a value of one (Gujarati & Porter, 2009)). A
good regression model should not have correlation in the independent variables because it can
affect the results of the model estimation (Ghozali, 2011).

One of the methods that can overcome multicollinearity is the Least Absolute Shrinkage
and Selection Operator (LASSO) regression. Rahmawati and Suratman (2022) compared
LASSO regression with Ridge and Elastic Net. Their research found LASSO regression to be
the most effective method with the simplest model among the others. Meanwhile, Nasution &
Pane (2024) compared it with Principal Component Regression (PCR). The results showed that
LASSO regression performed better than PCR. Therefore, LASSO regression is used in this
study.

LASSO regression can shrink the regression coefficient to exactly zero or close to zero,
in addition to simplifying the model through the variable selection process (Tibshirani, 2011).
In its implementation, LASSO regression can be solved using the Least Angle Regression
(LAR) algorithm which makes it easy to understand the order in which variables enter the model
and easy to calculate manually (Hastie et al., 2009)

LASSO regression is widely applied to determine the factors that influence the dependent
variable but experience multicollinearity. One example of its application is to determine the
factors that are suspected of influencing population expenditure (Rahayu & Husein, 2023).
Although many studies have used LASSO regression in a national or global context, studies
that focus on specific areas such as Wonosobo Regency are still very limited. It shows that the
application of the model in a local context can provide new insights into the factors suspected
of influencing per capita expenditure in Wonosobo Regency.

The per capita expenditure condition in Wonosobo Regency fluctuated in 2015-2024.
After increasing until 2018, there was a decline in 2019 and 2020 due to rising commodity
prices, inflation, and the impact of the pandemic. Although it recovered in 2021-2023, the
figure declined again in 2024. This decline was influenced by an increase in the number of
workers that was not accompanied by the availability of jobs, as well as the low quality of
education and skills, which caused a mismatch between graduates and the needs of the labor
market (Badan Pusat Statistik, 2025)

Based on these conditions, an analysis of the factors causing per capita expenditure in
Wonosobo using LASSO regression. The factors suspected of influencing per capita
expenditure are taken from the three main dimensions of the Human Development Index,
namely longevity and healthy living, knowledge, and a decent standard of living (BPS, 2022).
Longevity and healthy living can be measured by life expectancy, knowledge can be
represented by schooling expectancy and average years of schooling, and a decent standard of
living can be seen from per capita expenditure (Ginting & Lubis, 2023). All variables are
theoretically correlated, so multicollinearity management is necessary. One good statistical
method for handling multicollinearity is LASSO regression.
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Several previous studies have applied LASSO to handle multicollinearity. (Jamco et al.,
2023) addressed multicollinearity in the gross regional domestic product percentage in Maluku.
Rahmawati et al. (2022) compared the performance of LASSO regression with Ridge regression
in overcoming multicollinearity. The results showed that LASSO regression was better,
especially in selecting predictor variables, resulting in a simpler model and no multicollinearity.
Nasution & Pane (2024) compared the performance of LASSO with Principal Component
Regression (PCR). LASSO regression was found to be more efficient than PCR because it
produced MSE value was smaller than PCR. Based on these advantages, LASSO regression
will be used in this study to handle multicollinearity in per capita expenditure in Wonosobo.

2. METHOD

The data is secondary data obtained from Central Statistics Agency (BPS) Wonosobo
Regency in 2024. This research uses one response variable (Y) and four predictor variables (X).
A detailed explanation of the variables is provided in Table 1.

Table 1. Research Variables

Variables Symbol Unit
Per Capita Expenditure Y Rupiah
Human Development Index X, Percent
Average Years of Schooling X, Year
School Life Expectancy X5 Year
Life Expectancy X, Year

Determination of predictor variables based on the results of several studies which state that
Human Development Index (Febriani Sagala et al.,, 2024), Average Years of Schooling
(Sianturi et al., 2024), School Life Expectancy (Manurung & Hutabarat, 2021), and Life
Expectancy (Nizar & Arif, 2023) are suspected of having an influence on per capita
expenditure.

This research began with a multicollinearity detection on the per capita expenditure data
in multiple linear regression. Multicollinearity detection to show there is a linear relationship
between one or more independent variables in the regression model (Kadir, 2008). The
multicollinearity test is carried out by Variance Inflation Factor (VIF). The following is the VIF
formula (Mubarak, 2021)):

VIF, =

1-R? (M

with RZ being the value of the coefficient of determination and k is number of predictor
variables. If VIF > 10 then there is multicollinearity (Nisa & Maulina, 2024).

Once multicollinearity was identified, the process was continued with LASSO regression
using the LAR algorithm. The first step in handling multicollinearity with LASSO regression
is to determine the LASSO regression estimator. With penalty condition Y.F_; |8 | < t (Hastie
et al., 2009) formula LASSO regression estimator is (Tibshirani, 2011)
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n p
Blasso = argmin Y (% = fo = ) fiXac) @
i=1 k=1
where
Yi :Response variable for the i — th observation,
o : Constant in the regression model,
Bx  : Regression coefficient of the k — th predictor variable,
Xik : Value of the k — th independent variable for the i — th observation,
i :1,2,...,n; nis the number of observations,
k :1,2,...,p; pis the number of predictor variables.

The t parameter is a tuning parameter used to control the amount of shrinkage in the LASSO
regression coefficient.

t = Yo 1Bkl 3)

It acts as a limit on the total shrinkage of the coefficient by providing constraints so that

the sum of the absolute values of all regression coefficients does not exceed t, provided that:

t =2

1.

0. The following are the terms of analysis:
If the value t < t, withtg = z=1 | ,[?,8 |, the multiple linear regression coefficients will
shrink towards zero or exactly at zero. This is a desirable property of LASSO regression.
If the value t > t;, the LASSO regression coefficient gives the same results as the

multiple linear regression coefficient.
The second step is apply Least Angle Regression (LAR) algorithm with the following

algorithm (Efron et al., 2004):

I.

Find a vector that is proportional to the correlation vector between the independent
variables and the residuals of each independent variable, namely:

E=XY-m (4)
Determine the largest correlation value of the correlation vector, through:
C = max{|Cx[} (5)

So it is obtained s; = sign {|¢|} for k € A.

Determine X4, where A is a collection of indices of active variables. Active variables are
independent variables that are currently being used in the model because they have the
largest correlation value. These variables are collected into a submatrix called X 4, which
is defined as:

X = (CosiXp o rea (6)
with a sign s, + 1, so G4 and A, can be written as:
1
Ga=Xa'Xgdan Ay = (1'4Ga "1, (7)

Calculate the equiangular vector, which is a unit vector that forms the same angle to each
active variable in the model. This vector determines the direction of change of the
regression coefficient when a variable is added, by ensuring that the columns in X4 have
the same angle (less than 90°) to the vector. The value of the equiangular vector is found
using the following formula:
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uy = X, Wy dengan Wy = 4,6, 11, (8)
5. Calculating the inner product vector
a = X'uy )
6.  Model Prediction Updates and New Variable Selection
Bay =g +Yuydan A, = A — {k} (10)

7. Optimal steps 7 can be obtained from the following equation:
7 = min;, C{C_ak,c-l_ak (11)
€A AA—ak AA+ak

mint shows the smallest positive selection ¥y, counted for all keA¢. The goal is to

determine which new variables are most eligible to be added to the model.
8.  Inthe LAR algorithm for LASSO, the sign of the coefficient ) must be the same as the
correlation sign &, yaitu: sign (8,) = sign (&) = sk. This means, that if &, > 0, so
B must also be positive, and vice versa. This provision ensures that the sign of the active
variable coefficient remains consistent with the direction of its correlation to the residual,
so that the stability of the model is maintained throughout the process.
9.  This step is carried out when there is a potential change in sign in the active variable
coefficient, namely when ¥, where fx(y) to zero, smaller than the optimal step ¥. Mark y
calculated as:
o —Pr
y= mlnyk>0{d_k} (12)
with d;, = s,wAy. If ¥ < 7, then the coefficient will be zero before the addition of the
new variable, so the process must be stopped to prevent a sign change, according to the
LASSO rule. The variable is then removed from the active set, but can still be re-entered
if it meets the requirements in the next step.
10. Calculate the candidate value of the LASSO coefficient, calculated using the formula

t+1 t A
Y =0+ xdy (13)

11.  This process is repeated until all relevant variables are included in the model or there are
no more variables to select, signaling the completion of the variable selection stage.

The third step is to apply cross validation. One method for estimating the performance
and robustness of models is cross-validation (CV) (Berrar, 2019). Cross validation divides
training data and testing data. Training data is used to build models § and testing data is used
to test the goodness of prediction X8 (Soleh & Aunuddin, 2013). The following is a cross-
validation estimate (Hastie et al., 2009):

1% \
cv = ;;m a0 (14)

One of the cross-validation methods is k-folds. K-fold cross validation has been used in
numerous case studies and is a simple method for determining the relative effectiveness of
different models (Aprihartha & Idham, 2024). Using k-folds will produce an estimate of ¢ of
the test error MSE,, MSE,, ... , MSE;, The selection of the number of folds (¢) commonly used
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in K-fold cross-validation is usually ¢ = 5 or ¢ = 10 because it produces a small data
distribution towards the average value (Wijiyanto et al., 2024).

The MSE value can be calculated using the formula (Kutner et al., 2005):

~A 2
Y, — ¥, 2
wsp 2070 _ 3ei (1)
n—1 n—1

In LASSO regression, the best model is selected based on the minimum MSE value and optimal
parameters, which are determined through cross-validation to improve model accuracy (Jamco
etal., 2023).

The last step is to re-detect multicollinearity with Variance Inflation Factor (VIF). After
obtaining the best-performing regression model and applying it to the data, multicollinearity
detection is continued. Multicollinearity detection is carried out in the same way as the initial
stage, using VIF. It is hoped that the multicollinearity that occurs can be effectively addressed.

3. RESULT AND DISCUSSION

The first thing to do before checking for multicollinearity is to form a multiple linear
regression model on per capita expenditure data. The following is the estimated multiple linear
regression model:

¥ = 30,425 + 1,589X; + 1,037X, + 2,395X; — 2,299X,. (16)

After the model estimator is obtained, the next step is to detect multicollinearity. The
following are the VIF values for each predictor variable:

Table 2. VIF on each predictor variable

Variable VIF

X, 31, 246585
X, 9, 073431
X3 4, 734037
X, 26, 075121

Based on Table 2, the VIF value for X; and X, has a VIF value of more than 10. It is a
multicollinearity problem. After multicollinearity is detected, data standardization is carried
out. By defining the standard content of data measurement points, which covered data
collection, monitoring and alarm, data analysis and optimization, etc., the data was standardized
(Zhang et al., 2024). Table 3 displays the results of standardization of per capita expenditure
data in Wonosobo (Y) with four predictor variables.
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Table 3. Data Standardization Results

Observation Y X1 X, X3 X,
1 0.7764 1.4687 0.8365 0.8984 1.5465
2 1.441 1.0997 0.8036 0.8077 1.0441
3 0.8252 0.7061 0.7707 0.6262 0.782
4 0.4049 0.3289 0.5731 0.4445 0.5418
5 —0.1892 0.1567 0.5401 0.354 0.2796
6 0.198 0.1977 0.0791 0.2632 —0.201
7 0.4502 —-0.1796 0.3425 —0.1906 —0.5068
8 —1.0409 —0.9341 —0.4479 —0.2814 —0.8563
9 —1.3631 —1.5081 —1.7325 —0.3721 —-1.1621
10 —1.5024 —1.3359 —1.7652 —2.55 —1.4679

Furthermore, estimate the LASSO regression parameters using the LAR algorithm. The

steps are as follows:

1.

3.

Determine a vector that is comparable to the correlation vector between the predictor

variables and the residuals in the first selection. The value obtained is:
8,4040
~ / - 8,2222
A=X( =R =7 0884
7,9294
From the vector, the largest correlation value of the correlation vector is C = max{|¢;|} =
8,4040. This result explaines that the first active variable is X;, which contains data from
variables X; which has been standardized. For the value G4 = 9,00 and 4, = 3,00.
Determine the equiangular vector. The procedure begins by determining the weight value
of the active variable W 4. Vector size W, = 0,3333. will change the active variables

increase. The equiangular vector (uy) for the first active variable entered as follows
 0,4896 1
0,3666
0,2354
0,1097
0,0523
0,0659
—0,0598
—0,3114
—0,5026
—0, 4453
Find out the inner product vector for the first active variable a .
10, 71917
0,4031
0,1662
0,0361
_ 10,0082
0,0130
0,0108
0,2908
0,7581
L0, 59491
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4.  Calculate the prediction vectors iy, = fi4 + Yuy. This equation need ¥ from variables
selection. The results are as follows:

C-¢ C+e
k "}=0,75

AA — ay ’ AA + ay
The following prediction vector value obtained

10,3672 1
0,2749
0,1765
0,0822
~ PPN 0,0392
MA+=MA+yuA= 0‘0494
—0,0448
—0,2335
-0,3769
[—0, 33391
5. The candidate value of the regression coefficient for the first active variable

© 49 x dy = 0,2499
6.  Checking the coefficient sign is correct sign (By) = sign (&) = S. In the first

oS .+
y = mmkeAc{

variable selection obtained sign (,@1) = sign (¢;) = s; = 1.Because 8, and &; has the
same sign as s; then you can continue with the selection of the second variable.
7.  The same steps are repeated in each selection process until all predictor variables are

selected.
The result of parameter LASSO estimation at each step are given in Table 4.

Table 4. LASSO Parameter at Each Step

Step B1(X1) B2 (X2) Bz (X3) Bs (X4
0 0,0000000 0,0000000 0,00000000 0,0000000
1 0,2498419 0,0000000 0,00000000 0,0000000
2 0,5865269 0,3366850 0,00000000 0,0000000
3 0,5973010 0,3408444 0,01239943 0,0000000
4 1,2804893 0,2081409 0,17446217 —0,6956909

Based on the parameter value (coefficient) displayed Table 4, the order of entry of
variables in LASSO model can be seen in Table 5. From Table 5 information is obtained that
the Human Development Index (X,) predictor variable is first followed by Average Length of
Schooling (X), Old School Expectations (X3), and finally is Life Expectancy (X,).

Table 5. Order of Entry Variables in LASSO Model

Steps Incoming Variables
1 X1
2 X>
3 X3
4 X,

A k-fold cross validation process was implemented using the steps mode. In this study,
the k-fold cross validation method was used with the number of parts ¢ = 10 to evaluate model
performance and select optimal s parameters. Here is a table of cross-validation (CV) values:
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Table 6. CV values with mode steps

Step CV

0 1,1111111
1 0,8134334
2 0,2397145
3 0,2425746
4 0,4819177

Table 6 shows that the minimum CV is 0,2397145. It is mean the minimum mean
squared error (MSE) value from the cross-validation process. Therefore, the model in step 2 is
selected as the best model. In addition, from the results of the cross-validation, the value
obtained s = 0,5 this value reflects the penalty.

A good LASSO regression model is a model that shrinks the regression coefficient to
zero. The more coefficient that shrinks, the more multicollinearity decreases. In other words
the performance of the Lasso regression model is good. Following are the results of the
shrinkage of the resulting lasso regression coefficient:

Table 7. Coefficients of LASSO Regression

Variable Coefficient
X1 0,5866

X, 0,3367

X3 O

X4 0

Table 7 shows that almost the coefficient values of LASSO tends to shrink towards zero.
Additionally two coefficients on X3 and X, are zero so the School Life Expectancy and Life
Expectancy are not significant and the LASSO regression on expenditue per capita data is the
best model. Further, multicollinearity checks were performed to verify the presence of
multicollinearity. Finally the best LASSO regression model is

Y= -2,4277 x 107> + 0,5866X; + 0,3367X,. 17)

Equation (17) means that the variables that influence per capita expenditure in Wonosobo is
Human Development Index and Average Length of Schooling.

Table 8 shows that the VIF values for all predictor variables are less than 10, indicating
that there is no multicollinearity. It can be concluded that the LASSO regression model obtained
is effective in overcoming multicollinearity in per capita expenditure data in Wonosobo.

Table 8. VIF of LASSO Regression

Variable VIF
X1 6,4428
X, 6,4428
X3 0

X4 0
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4. CONCLUSION

LASSO regression with LAR algorithm can select School Life Expectancy (X3) and Life
Expectancy (X,) as insignificant predictor variables influencing Average per Capita
Expenditure by reducing the regression coefficients closer to zero for both predictor variables.
This results in the following LASSO regression model.

Y = —2,4277 x 107> + 0,5866X; + 0,3367X,

The model interprets that Per Capita Expenditure in Wonosobo is influenced by the
Human Development Index (X;) and Average Years of Schooling (X;). This result aligns with
the theory in measuring the Human Development Index (HDI) that Per Capita Expenditure is
an indicator of the primary dimension of a decent standard of living and Average Length of
Schooling is an indicator of the HDI's primary dimension of knowledge.
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