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ABSTRACT 

 

Multicollinearity is a problem that must be addressed when using regression. Multicollinearity often 

occurs in socioeconomic data, such as Per Capita Expenditure. Several relevant studies have shown 

that Least Absolute Shrinkage and Selection Operator (LASSO) regression is a good method for 

handling multicollinearity. Additionally, it produces the simple model. Meanwhile, the Least Angle 

Regression (LAR) algorithm works effectively in model optimization, especially when 

multicollinearity occurs in multiple variables. Therefore, this study aims to handle multicollinearity 

with LAR LASSO regression in the specific case of per capita expenditure data in Wonosobo with 

many variables experiencing multicollinearity. The result study is LAR LASSO regression 

successfully eliminated two of the four predictor variables that exhibited multicollinearity by 

reducing the regression coefficients on the two predictor variables to zero. The best regression 

model obtained produces two significant coefficients so that Per Capita Expenditure in Wonosobo 

was influenced by the Human Development Index and Average Years of Schooling. 

Keywords: LASSO regression, LAR, multicollinearity, per capita expenditure. 
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1. INTRODUCTION 

 

Multicollinearity is a problem that often arises in regression analysis. Multicollinearity 

occurs when the independent variables in the regression model have a strong linear relationship, 

indicated by a high correlation coefficient or even a value of one (Gujarati & Porter, 2009)). A 

good regression model should not have correlation in the independent variables because it can 

affect the results of the model estimation (Ghozali, 2011).  

One of the methods that can overcome multicollinearity is the Least Absolute Shrinkage 

and Selection Operator (LASSO) regression. Rahmawati and Suratman (2022) compared 

LASSO regression with Ridge and Elastic Net. Their research found LASSO regression to be 

the most effective method with the simplest model among the others. Meanwhile, Nasution & 

Pane (2024) compared it with Principal Component Regression (PCR). The results showed that 

LASSO regression performed better than PCR. Therefore, LASSO regression is used in this 

study.  

LASSO regression can shrink the regression coefficient to exactly zero or close to zero, 

in addition to simplifying the model through the variable selection process (Tibshirani, 2011). 

In its implementation, LASSO regression can be solved using the Least Angle Regression 

(LAR) algorithm which makes it easy to understand the order in which variables enter the model 

and easy to calculate manually (Hastie et al., 2009) 

LASSO regression is widely applied to determine the factors that influence the dependent 

variable but experience multicollinearity. One example of its application is to determine the 

factors that are suspected of influencing population expenditure (Rahayu & Husein, 2023). 

Although many studies have used LASSO regression in a national or global context, studies 

that focus on specific areas such as Wonosobo Regency are still very limited. It shows that the 

application of the model in a local context can provide new insights into the factors suspected 

of influencing per capita expenditure in Wonosobo Regency. 

The per capita expenditure condition in Wonosobo Regency fluctuated in 2015–2024. 

After increasing until 2018, there was a decline in 2019 and 2020 due to rising commodity 

prices, inflation, and the impact of the pandemic. Although it recovered in 2021–2023, the 

figure declined again in 2024. This decline was influenced by an increase in the number of 

workers that was not accompanied by the availability of jobs, as well as the low quality of 

education and skills, which caused a mismatch between graduates and the needs of the labor 

market (Badan Pusat Statistik, 2025) 

Based on these conditions, an analysis of the factors causing per capita expenditure in 

Wonosobo using LASSO regression. The factors suspected of influencing per capita 

expenditure are taken from the three main dimensions of the Human Development Index, 

namely longevity and healthy living, knowledge, and a decent standard of living (BPS, 2022). 

Longevity and healthy living can be measured by life expectancy, knowledge can be 

represented by schooling expectancy and average years of schooling, and a decent standard of 

living can be seen from per capita expenditure (Ginting & Lubis, 2023). All variables are 

theoretically correlated, so multicollinearity management is necessary. One good statistical 

method for handling multicollinearity is LASSO regression. 
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Several previous studies have applied LASSO to handle multicollinearity. (Jamco et al., 

2023) addressed multicollinearity in the gross regional domestic product percentage in Maluku. 

Rahmawati et al. (2022) compared the performance of LASSO regression with Ridge regression 

in overcoming multicollinearity. The results showed that LASSO regression was better, 

especially in selecting predictor variables, resulting in a simpler model and no multicollinearity. 

Nasution & Pane (2024) compared the performance of LASSO with Principal Component 

Regression (PCR). LASSO regression was found to be more efficient than PCR because it 

produced MSE value was smaller than PCR. Based on these advantages, LASSO regression 

will be used in this study to handle multicollinearity in per capita expenditure in Wonosobo. 

 

2. METHOD 

 

The data is secondary data obtained from Central Statistics Agency (BPS) Wonosobo 

Regency in 2024. This research uses one response variable (𝑌) and four predictor variables (𝑋). 

A detailed explanation of the variables is provided in Table 1.  

 
Table 1. Research Variables 

Variables Symbol Unit 

Per Capita Expenditure 𝑌 Rupiah 

Human Development Index 𝑋1 Percent 

Average Years of Schooling 𝑋2 Year 

School Life Expectancy 𝑋3 Year 

Life Expectancy 𝑋4 Year 

 

Determination of predictor variables based on the results of several studies which state that 

Human Development Index (Febriani Sagala et al., 2024), Average Years of Schooling 

(Sianturi et al., 2024), School Life Expectancy (Manurung & Hutabarat, 2021), and Life 

Expectancy (Nizar & Arif, 2023) are suspected of having an influence on per capita 

expenditure.  

This research began with a multicollinearity detection on the per capita expenditure data 

in multiple linear regression. Multicollinearity detection to show there is a linear relationship 

between one or more independent variables in the regression model (Kadir, 2008). The 

multicollinearity test is carried out by Variance Inflation Factor (VIF). The following is the VIF 

formula (Mubarak, 2021)): 

𝑉𝐼𝐹𝑘 =
1

1 − 𝑅𝑘
2 (1) 

with 𝑅𝑘
2 being the value of the coefficient of determination and k is number of predictor 

variables. If VIF > 10 then there is multicollinearity (Nisa & Maulina, 2024). 

 Once multicollinearity was identified, the process was continued with LASSO regression 

using the LAR algorithm. The first step in handling multicollinearity with LASSO regression 

is to determine the LASSO regression estimator. With penalty condition ∑ |𝛽𝑘|
𝑝
𝑘=1 ≤ 𝑡 (Hastie 

et al., 2009) formula LASSO regression estimator is (Tibshirani, 2011) 
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𝛽̂𝑙𝑎𝑠𝑠𝑜 = arg𝑚𝑖𝑛 ∑(𝑌𝑖 − 𝛽0 −

𝑛

𝑖=1

∑ 𝛽𝑘𝑋𝑖𝑘)

𝑝

𝑘=1

2

 (2) 

where 

𝑌ᵢ  : Response variable for the 𝑖 − 𝑡ℎ observation, 

𝛽0  : Constant in the regression model, 

𝛽ₖ  : Regression coefficient of the 𝑘 − 𝑡ℎ predictor variable, 

𝑋ᵢₖ  : Value of the 𝑘 − 𝑡ℎ independent variable for the 𝑖 − 𝑡ℎ observation, 

𝑖      : 1, 2, . . . , 𝑛;  𝑛 is the number of observations, 

𝑘     : 1, 2, . . . , 𝑝;  𝑝 is the number of predictor variables. 

 

The 𝑡 parameter is a tuning parameter used to control the amount of shrinkage in the LASSO 

regression coefficient.  

𝑡 =  ∑ |𝑝
𝑘=1 𝛽̂𝑘|      (3) 

 

It acts as a limit on the total shrinkage of the coefficient by providing constraints so that 

the sum of the absolute values of all regression coefficients does not exceed 𝑡, provided that: 

𝑡 ≥  0. The following are the terms of analysis: 

1. If the value 𝑡 <  𝑡0 with 𝑡₀ =  ∑ |𝑝
𝑘=1 𝛽̂𝑘

0|, the multiple linear regression coefficients will 

shrink towards zero or exactly at zero. This is a desirable property of LASSO regression. 

2. If the value 𝑡 ≥  𝑡0, the LASSO regression coefficient gives the same results as the 

multiple linear regression coefficient. 

The second step is apply Least Angle Regression (LAR) algorithm with the following 

algorithm (Efron et al., 2004): 

1. Find a vector that is proportional to the correlation vector between the independent 

variables and the residuals of each independent variable, namely: 

𝝁̂ = 𝐗′(𝐘 − 𝝁̂) (4) 

2. Determine the largest correlation value of the correlation vector, through: 

C = max{|𝑐̂𝑘|} (5) 

So it is obtained 𝑠𝑗 = sign {|𝑐̂𝑘|} for 𝑘 ∈ 𝐴. 

3. Determine 𝑿𝑨, where A is a collection of indices of active variables. Active variables are 

independent variables that are currently being used in the model because they have the 

largest correlation value. These variables are collected into a submatrix called 𝑿𝑨, which 

is defined as: 

𝑿𝑨 = (…𝑠𝑘𝑿𝒌 …)k∈A (6) 

with a sign 𝑠𝑘 ± 1, so 𝑮𝑨 and 𝐴𝐴 can be written as: 

𝑮𝑨 = 𝑿𝑨′𝑿𝑨 dan 𝐴𝐴 = (1′
𝐴𝑮𝑨

−𝟏𝟏𝑨)−
1

2 (7) 

4. Calculate the equiangular vector, which is a unit vector that forms the same angle to each 

active variable in the model. This vector determines the direction of change of the 

regression coefficient when a variable is added, by ensuring that the columns in 𝑿𝑨 have 

the same angle (less than 90°) to the vector. The value of the equiangular vector is found 

using the following formula: 
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𝒖𝑨 = 𝑿𝑨𝑾𝑨 dengan 𝑾𝑨 = 𝐴𝐴𝑮𝑨
−𝟏𝟏𝑨 (8) 

5. Calculating the inner product vector 

𝒂 ≡  𝑿′𝒖𝑨 (9) 

6. Model Prediction Updates and New Variable Selection   

𝝁̂𝐴+ = 𝝁̂𝐴 + 𝜸̂𝒖𝐴 dan 𝑨+ = 𝐴 − {𝑘} (10) 

7. Optimal steps 𝛾 can be obtained from the following equation: 

𝛾 = 𝑚𝑖𝑛𝑘𝜖𝐴𝑐
+ {

𝑪̂ − 𝒄̂𝒌

𝑨𝑨 − 𝒂𝒌
,

𝑪̂ + 𝒄̂𝒌

𝑨𝑨 + 𝒂𝒌
} (11) 

𝑚𝑖𝑛+ shows the smallest positive selection 𝛾𝑘, counted for all 𝑘𝜖𝐴𝑐. The goal is to 

determine which new variables are most eligible to be added to the model. 

8. In the LAR algorithm for LASSO, the sign of the coefficient 𝛽̂𝑘 must be the same as the 

correlation sign 𝑐̂𝑘, yaitu: 𝑠𝑖𝑔𝑛 (𝛽̂𝑘)  =  𝑠𝑖𝑔𝑛 (𝑐̂𝑘)  =  𝑠𝑘. This means, that if 𝑐̂𝑘 > 0, so 

𝛽̂𝑘 must also be positive, and vice versa. This provision ensures that the sign of the active 

variable coefficient remains consistent with the direction of its correlation to the residual, 

so that the stability of the model is maintained throughout the process. 

9. This step is carried out when there is a potential change in sign in the active variable 

coefficient, namely when γ̃, where 𝛽ₖ(γ) to zero, smaller than the optimal step 𝛾. Mark γ̃ 

 calculated as: 

γ̃ = 𝑚𝑖𝑛𝛾𝑘>0{
−𝛽̂𝑘

𝑑𝑘
} (12) 

with 𝑑𝑘 = 𝑠𝑘𝑤𝐴𝑘. If γ̃ < 𝛾, then the coefficient will be zero before the addition of the 

new variable, so the process must be stopped to prevent a sign change, according to the 

LASSO rule. The variable is then removed from the active set, but can still be re-entered 

if it meets the requirements in the next step. 

10. Calculate the candidate value of the LASSO coefficient, calculated using the formula  

𝛽𝑘
(𝑡+1)

= 𝛽𝑘
(𝑡)

+ 𝛾 × 𝑑𝑘 (13) 

11. This process is repeated until all relevant variables are included in the model or there are 

no more variables to select, signaling the completion of the variable selection stage. 

The third step is to apply cross validation. One method for estimating the performance 

and robustness of models is cross-validation (CV) (Berrar, 2019). Cross validation divides 

training data and testing data. Training data is used to build models 𝛽̂  and testing data is used 

to test the goodness of prediction 𝑋𝛽̂ (Soleh & Aunuddin, 2013). The following is a cross-

validation estimate (Hastie et al., 2009): 

𝐶𝑉 =
1

𝑛
∑(𝑌𝑖 − Ŷ𝑖)

𝑛

𝑖=1

 (14) 

One of the cross-validation methods is k-folds. K-fold cross validation has been used in 

numerous case studies and is a simple method for determining the relative effectiveness of 

different models (Aprihartha & Idham, 2024). Using k-folds will produce an estimate of 𝑐 of 

the test error MSE1, MSE2, … , MSE𝑘. The selection of the number of folds (𝑐) commonly used 
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in K-fold cross-validation is usually 𝑐 =  5 or 𝑐 =  10 because it produces a small data 

distribution towards the average value (Wijiyanto et al., 2024).  

The MSE value can be calculated using the formula (Kutner et al., 2005): 

 

𝑀𝑆𝐸 =
∑(𝑌𝑖 − Ŷ𝑖

2
)

𝑛 − 1
=

∑𝑒𝑖
2

𝑛 − 1
 (15) 

  

In LASSO regression, the best model is selected based on the minimum MSE value and optimal 

parameters, which are determined through cross-validation to improve model accuracy (Jamco 

et al., 2023).  

The last step is to re-detect multicollinearity with Variance Inflation Factor (VIF). After 

obtaining the best-performing regression model and applying it to the data, multicollinearity 

detection is continued. Multicollinearity detection is carried out in the same way as the initial 

stage, using VIF. It is hoped that the multicollinearity that occurs can be effectively addressed. 

 

3. RESULT AND DISCUSSION 

 

The first thing to do before checking for multicollinearity is to form a multiple linear 

regression model on per capita expenditure data. The following is the estimated multiple linear 

regression model: 

 

Ŷ =  30,425 +  1,589𝑋1  +  1,037𝑋2  +  2,395𝑋3  −  2,299𝑋4.  (16) 

 

After the model estimator is obtained, the next step is to detect multicollinearity. The 

following are the VIF values for each predictor variable: 

 

Table 2. VIF on each predictor variable 

Variable VIF 

𝑋1 31, 246585 

𝑋2 9, 073431 

𝑋3 4, 734037 

𝑋4 26, 075121 

 

Based on Table 2, the VIF value for 𝑋1 and 𝑋2 has a VIF value of more than 10. It is a 

multicollinearity problem. After multicollinearity is detected, data standardization is carried 

out. By defining the standard content of data measurement points, which covered data 

collection, monitoring and alarm, data analysis and optimization, etc., the data was standardized 

(Zhang et al., 2024).  Table 3 displays the results of standardization of per capita expenditure 

data in Wonosobo (Y) with four predictor variables. 
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Table 3. Data Standardization Results 

Observation 𝒀 𝑿₁ 𝑿₂ 𝑿₃ 𝑿₄ 

1 0.7764 1.4687 0.8365 0.8984 1.5465 

2 1.441 1.0997 0.8036 0.8077 1.0441 

3 0.8252 0.7061 0.7707 0.6262 0.782 

4 0.4049 0.3289 0.5731 0.4445 0.5418 

5 −0.1892 0.1567 0.5401 0.354 0.2796 

6 0.198 0.1977 0.0791 0.2632 −0.201 

7 0.4502 −0.1796 0.3425 −0.1906 −0.5068 

8 −1.0409 −0.9341 −0.4479 −0.2814 −0.8563 

9 −1.3631 −1.5081 −1.7325 −0.3721 −1.1621 

10 −1.5024 −1.3359 −1.7652 −2.55 −1.4679 

 

Furthermore, estimate the LASSO regression parameters using the LAR algorithm. The 

steps are as follows: 

1. Determine a vector that is comparable to the correlation vector between the predictor 

variables and the residuals in the first selection. The value obtained is: 

𝝁̂ = 𝐗′(𝐘 − 𝝁̂) = [

8,4040
8,2222
7,0884
7,9294

] 

From the vector, the largest correlation value of the correlation vector is C = max{|𝒄̂𝑘|} =

8,4040. This result explaines that the first active variable is 𝑋1, which contains data from 

variables 𝑋1 which has been standardized. For the value 𝑮𝑨 = 9,00 and 𝐴𝐴 = 3,00. 

2. Determine the equiangular vector. The procedure begins by determining the weight value 

of the active variable 𝑾𝑨. Vector size 𝑾𝑨 = 0,3333. will change the active variables 

increase. The equiangular vector (𝒖𝑨) for the first active variable entered as follows 

𝒖𝑨 =

[
 
 
 
 
 
 
 
 
 

0, 4896
0, 3666
0, 2354
0, 1097
0, 0523
0, 0659

−0, 0598
−0, 3114
−0, 5026
−0, 4453]

 
 
 
 
 
 
 
 
 

 

3. Find out the inner product vector for the first active variable 𝒂 .  

𝒂 ≡  𝑿′𝒖𝑨 =

[
 
 
 
 
 
 
 
 
 
0, 7191
0, 4031
0, 1662
0, 0361
0, 0082
0, 0130
0, 0108
0, 2908
0, 7581
0, 5949]
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4. Calculate the prediction vectors 𝝁̂𝐴+ = 𝝁̂𝐴 + 𝜸̂𝒖𝐴. This equation need 𝜸̂ from variables 

selection. The results are as follows: 

𝜸̂ = 𝑚𝑖𝑛𝑘𝜖𝐴𝑐
+ {

𝑪̂ − 𝒄̂𝒌

𝑨𝑨 − 𝒂𝒌
,
𝑪̂ + 𝒄̂𝒌

𝑨𝑨 + 𝒂𝒌
} = 0,75 

The following prediction vector value obtained 

𝝁̂𝐴+ = 𝝁̂𝐴 + 𝜸̂𝒖𝐴 =

[
 
 
 
 
 
 
 
 
 

0, 3672
0, 2749
0, 1765
0, 0822
0, 0392
0, 0494

−0, 0448
−0, 2335
−0, 3769
−0, 3339]

 
 
 
 
 
 
 
 
 

 

5. The candidate value of the regression coefficient for the first active variable 

𝛽𝑘
(𝑡)

+ 𝛾 × 𝑑𝑘 = 0,2499 

6. Checking the coefficient sign is correct 𝑠𝑖𝑔𝑛 (𝛽̂𝒌)  =  𝑠𝑖𝑔𝑛 (𝑐̂𝒌)  =  𝑠𝒌. In the first 

variable selection obtained 𝑠𝑖𝑔𝑛 (𝛽̂𝟏) =  𝑠𝑖𝑔𝑛 (𝑐̂𝟏)  =  𝑠𝟏 = 1. Because 𝛽̂1 and 𝑐̂1 has the 

same sign as 𝑠1 then you can continue with the selection of the second variable. 

7. The same steps are repeated in each selection process until all predictor variables are 

selected. 

The result of parameter LASSO estimation at each step are given in Table 4. 

 
Table 4. LASSO Parameter at Each Step 

Step 𝜷₁ (𝑿₁) 𝜷₂ (𝑿₂) 𝜷₃ (𝑿₃) 𝜷₄ (𝑿₄) 

0 0,0000000 0,0000000 0,00000000 0,0000000 
1 0,2498419 0,0000000 0,00000000 0,0000000 
2 0,5865269 0,3366850 0,00000000 0,0000000 
3 0,5973010 0,3408444 0,01239943 0,0000000 
4 1,2804893 0,2081409 0,17446217 −0,6956909 

Based on the parameter value (coefficient) displayed Table 4, the order of entry of 

variables in LASSO model can be seen in Table 5. From Table 5 information is obtained that 

the Human Development Index (𝑋₁) predictor variable is first followed by Average Length of 

Schooling (𝑋₂), Old School Expectations (𝑋₃), and finally is Life Expectancy (𝑋₄). 

 

               Table 5. Order of Entry Variables in LASSO Model 

Steps  Incoming Variables 

1 𝑋₁ 

2 𝑋₂ 

3 𝑋₃ 

4 𝑋₄ 

 

A k-fold cross validation process was implemented using the steps mode. In this study, 

the k-fold cross validation method was used with the number of parts 𝑐 =  10 to evaluate model 

performance and select optimal 𝑠 parameters. Here is a table of cross-validation (CV) values: 
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Table 6. CV values with mode steps 

Step CV  

0 1,1111111 

1 0,8134334 

2 0,2397145 

3 0,2425746 

4 0,4819177 

 

Table 6 shows that the minimum CV is  0,2397145. It is mean the minimum mean 

squared error (MSE) value from the cross-validation process. Therefore, the model in step 2 is 

selected as the best model. In addition, from the results of the cross-validation, the value 

obtained 𝑠 = 0,5 this value reflects the penalty.  

A good LASSO regression model is a model that shrinks the regression coefficient to 

zero. The more coefficient that shrinks, the more multicollinearity decreases. In other words 

the performance of the Lasso regression model is good. Following are the results of the 

shrinkage of the resulting lasso regression coefficient: 

 
Table 7. Coefficients of LASSO Regression 

Variable           Coefficient 

𝑋₁ 0,5866 

𝑋₂ 0,3367 

𝑋₃ 0 

𝑋₄ 0 

  

Table 7 shows that almost the coefficient values of LASSO tends to shrink towards zero. 

Additionally two coefficients on 𝑋3 and 𝑋4 are zero so the School Life Expectancy and Life 

Expectancy are not significant and the LASSO regression on expenditue per capita data is the 

best model. Further, multicollinearity checks were performed to verify the presence of 

multicollinearity. Finally the best LASSO regression model is  

 

Ŷ =  −2,4277 × 10−15  +  0,5866𝑋1  +  0,3367𝑋2.     (17) 

Equation (17) means that the variables that influence per capita expenditure in Wonosobo is 

Human Development Index and Average Length of Schooling. 

Table 8 shows that the VIF values for all predictor variables are less than 10, indicating 

that there is no multicollinearity. It can be concluded that the LASSO regression model obtained 

is effective in overcoming multicollinearity in per capita expenditure data in Wonosobo. 

 
Table 8. VIF of LASSO Regression 

Variable VIF 

𝑋₁ 6,4428 

𝑋₂ 6,4428 

𝑋₃ 0 

𝑋₄ 0 
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4. CONCLUSION 
 

LASSO regression with LAR algorithm can select School Life Expectancy (𝑋3) and Life 

Expectancy (𝑋4) as insignificant predictor variables influencing Average per Capita 

Expenditure by reducing the regression coefficients closer to zero for both predictor variables. 

This results in the following LASSO regression model. 

Ŷ =  −2,4277 × 10−15  +  0,5866𝑋1  +  0,3367𝑋2  

The model interprets that Per Capita Expenditure in Wonosobo is influenced by the 

Human Development Index (𝑋1) and Average Years of Schooling (𝑋2). This result aligns with 

the theory in measuring the Human Development Index (HDI) that Per Capita Expenditure is 

an indicator of the primary dimension of a decent standard of living and Average Length of 

Schooling is an indicator of the HDI's primary dimension of knowledge.  
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