

Walisongo Journal of Chemistry Vol. 4 Issue 1 (2021), 32-44 ISSN: 2621-5985 (online); 2549-385X (print) DOI: https://doi.org/10.21580/wjc.v4i1.7587

Perbandingan Aktivitas Reaksi Fotodegradasi Remazol Red dengan TiO₂ Anatas 50%-Rutil 50% dan TiO₂ Anatas Tersupport AgI

Sri Rejeki Dwi Astuti¹, Anggi Ristiyana Puspita Sari², Karlinda¹

¹Universitas Negeri Yogyakarta, D.I. Yogyakarta, Indonesia ²Universitas Palangkaraya, Kalimantan Tengah, Indonesia E-mail: <u>srirejeki.dwiastuti@yahoo.com</u>

Received: 16 February 2021; Accepted: 8 June 2021; Published: 9 July 2021

Abstrak

Kandungan ikatan azo dalam zat pewarna tekstil remazol red mengakibatkan zat warna lebih mudah larut dalam air dan memiliki stabilitas yang tinggi. Hal ini menyebabkan limbah tekstil memerlukan penanganan khusus agar aman dan tidak memberikan dampak negatif ketika dilepas ke perairan. Salah satu cara alternatif untuk menangani limbah non-degradable adalah dengan menggunakan metode fotodegradasi dengan bantuan fotokatalis. Penelitian ini bertujuan untuk membandingkan aktivitas reaksi fotodegradasi remazol red dengan fotokatalis TiO₂ anatas 50%-rutil 50% dan TiO₂ anatas tersupport AgI. Proses fotodegradasi Remazol red dilakukan dengan memvariasi fotokatalis yang digunakan yaitu fotokatalisis TiO₂ anatas 50%rutil 50% dan TiO₂ anatas tersupport AgI dan lama waktu penyinaran yaitu 15 menit, 30 menit, 45 menit, 60 menit, 75 menit, dan 90 menit. Untuk mengetahui pengaruh lama penyinaran terhadap fotodegradasi Remazol red, maka dilakukan pengukuran absorbansi larutan menggunakan spectronic 200 pada panjang gelombang 558nm setiap selang waktu 15 menit. Hasil aktivitas fotokatalitis menunjukkan persentase degradasi remazol red pada sistem TiO₂ anatas tersupport AgI, TiO₂ anatas 50%-rutil 50% dan tanpa katalis berturut-turut sebesar 32%, 16%, dan 7%. Oleh karena itu fotokatalis TiO₂ anatas tersupport AgI memiliki aktivitas fotokatalisis yang lebih baik daripada fotokatalis TiO₂ anatas 50% - rutil 50%

Kata Kunci: fotodegradasi; remazol red; TiO₂ anatas 50% - rutil 50%; TiO₂ anatas tersupport AgI

Abstract

The content of azo bonds in Remazol red textile dye causes the dye to be more soluble in water and has high stability. It causes textile waste to require special handling to be safe and not has a negative effect when released into the waters. One alternative way to deal with non-degradable waste is to use the photodegradation method with the help of a photocatalyst. This study aims to compare the activity of Remazol red photodegradation reaction with photocatalytic TiO2 anatase 50% -rutile 50% and TiO2 anatase supported AgI. Remazol red photodegradation process performed by varying the photocatalysts used are photocatalytic TiO2 anatase 50% and TiO2 anatase supported AgI and long irradiation time of 15 minutes, 30 minutes, 45 minutes, 60 minutes, 75 minutes, and 90 minutes. Determining the effect of irradiation time on the photodegradation Remazol red, the absorbance of the solution was measured using spectronic 200

Copyright © 2021 WJC | ISSN 2621-5985 (online) | ISSN 2549-385X (print) Volume 4, Issue 1, 2021 at a wavelength of 558 nm every 15 minutes. The results show the percentage degradation of photocatalytic activity of the Remazol red system TiO2 anatase supported AgI, TiO2 anatase 50% - rutile 50% and without a catalyst, respectively for 32%, 16%, and 7%. Therefore, the photocatalyst TiO2 anatase supported AgI has a photocatalytic activity which is better than the photocatalyst TiO2 anatase 50% - 50% rutile.

Keywords: photocatalytic; remazol red; TiO₂ anatase 50% - rutile 50%; TiO₂ supported with AgI

Pendahuluan

Limbah industri terutama industri tekstil merupakan salah satu penyebab utama pencemaran air karena mengandung zat-zat yang menjadi polutan air seperti suspensi padat, zat warna, pelumas, minyak, chemical oxygen demand (COD), garam dan zat kimia lain yang larut dalam air baik yang tidak dapat terdegradasi maupun yang sukar terdegradasi (Anbalagan, 2012; Ara, et al., 2013; Khalik, et al., 2015). Zat warna merupakan sumber utama kontaminan dalam limbah industri karena warna yang terbentuk dari proses pewarnaan pada industri tekstil akan terakumulasi dalam air selama proses pewarnaan, sehingga dapat memberikan efek negatif bagi lingkungan maupun kesehatan manusia (Saggioro, et al., 2011).

Zat warna yang sering digunakan dalam bidang industri tekstil adalah zat warna sintetis. Zat warna sintetis lebih disukai karena bersifat stabil (memiliki struktur aromatis), menghasilkan warna yang menarik dan harganya lebih murah (Anbalagan, 2012; Priya, Selvan, & Umayal, 2014). Meskipun demikian, dampak negatif dari pewarna sintetis pun tidak dapat terelakan lagi karena bersifat karsinogenik dan dapat mempengaruhi organisme yang hidup di air (Ara, et al., 2013). Salah satu contoh zat warna yang paling banyak digunakan dalam industri tekstil senyawa azo (senyawa yang mengandung gugus kromofor N=N) (Gustiani, et al., 2014).

Zat warna azo merupakan kelas pewarna yang paling besar (terdiri atas 3000 macam zat warna), memiliki stabilitas warna yang tinggi, memiliki afinitas yang tinggi untuk berikatan dengan serabut selulosa dan memiliki berbagai jenis pilihan warna dibanding zat warna alami (Ara, *et al.*, 2013; Saratale, *et al.*, 2012). Zat warna azo banyak digunakan di industri tekstil, kertas, makanan dan kulit (Saratale, *et al.*, 2012). Oleh karena itu limbah pabrik mengandung sisa zat warna azo dalam jumlah yang relatif banyak.

Kadar zat warna azo yang berlimpah pada limbah pabrik menyebabkan limbah bersifat mutagenik dan karsinogenik. Hal ini dikarenakan adanya gugus aromatik amina dalam zat warna azo yang dapat menyebabkan terjadinya mutasi genetik memicu terbentuknya yang tumor (Anbalagan, 2012). Remazol red merupakan salah satu jenis zat warna azo utama, selain remazol blue dan remazol yellow. Jika zat warna azo utama tersebut dicampurkan satu dengan yang lain akan menghasilkan warna yang berbeda-beda (Anbalagan, 2012). Penggunaan zat warna remazol red banyak digunakan dalam industri baik sebagai untuk mewarnai kain maupun membuat warna baru dengan mencampurkan remazol red dengan remazol lain. Ternyata sebanyak 2%-50% zat warna yang digunakan pada proses pewarnaan bahan tekstil tidak menempel pada serat kain, sehingga zat warna tersebut dapat masuk ke dalam perairan melalui limbah yang dihasilkan (Gustiani, et al., 2014). Adanya ikatan azo (-N=N-) pada zat warna azo menjadikannya lebih mudah larut dalam air dan memiliki stabilitas yang tinggi (de Sousa, *et al.*, 2012). Oleh karena itu, limbah tekstil memerlukan penanganan yang rumit dan membutuhkan beberapa langkah sampai limbah tersebut aman dan tidak memberikan dampak negatif ketika dilepas ke perairan

Untuk mengantisipasi terjadinva dampak negatif dari zat warna azo bagi lingkungan maupun kesehatan manusia, dapat dilakukan dengan cara menghilangkan kandungan zat warna azo dari limbah industri. Berbagai cara dapat dilakukan untuk menghilangkan kandungan zat warna azo, yaitu dengan cara degradasi aerobik menggunakan bakteri aerob atau kombinasi degradasi areboik dan anaerobik (biodegradasi), perlakukan secara fisika (adsorpsi) dan perlakukan kimia (fotodegradasi) (Anbalagan, 2012; Ara, et al., 2013; Islam, et al., 2013; Priya, Selvan, & Umayal, 2014; Widihati, Diantariani, & Nikmah, 2011).

Metode fotodegradasi lebih efektif dibandingkan dengan metode adsorpsi dan metode lumpur aktif (menggunakan bakteri aerob maupun anaerob). Metode adsorpsi kurang efektif dikarenakan zat warna yang diadsorpsi terakumulasi dalam adsorben sehingga menimbulkan masalah baru (Wijaya, et al., 2006). Begitu juga pendapat dari Widihati, Diantariani, & Nikmah (2011) bahwa metode lumpur aktif juga kurang efektif karena beberapa jenis limbah zat warna memiliki sifat resisten untuk didegradasi secara biologis. Oleh karena itu, fotodegradasi metode dikembangkan sebagai metode alternatif dalam pengolahan limbah zat pewarna organik terutama zat warna azo menggunakan semikonduktor fotokatalis dan sinar UV. Senyawa azo

sebenarnya dapat mengalami fotodegradasi secara alami dengan adanya sinar matahari, namun reaksi ini sangat lambat karena intensitas sinar UV yang masuk ke permukaan bumi relatif rendah. Hal ini menyebabkan akumulasi zat warna dalam perairan lebih cepat dari pada fotodegradasinya (Wijaya, *et al.*, 2006)

Semikonduktor yang sering digunakan dalam metode fotodegradasi adalah TiO₂, ZnO, CdS dan Fe₂O₃ (Andari & Wardhani, 2014; Islam, et al., 2013; Pawar, Sendoğdular, & Gouma, 2018). TiO₂ merupakan semikonduktor yang paling baik untuk fotokatalisis zat warna organik dalam air (Islam, et al., 2013). Hal ini dikarenakan TiO₂ bersifat fotostabil, memiliki aktivitas tinggi, murah, dan tidak bersifat toksik (Bubacz et al., 2010; Carini Jr, et al., 2015; Sangchay, Sikong, & Kooptarnond, 2011; Yang, et al., 2006). Efisiensi dari reaksi fotokatalisis dipengaruhi oleh tingkat laju dari fotoinduksi rekombinasi antara pasangan elektron dan lubang positif yang terbentuk selama proses fotokatalisis dan kapabilitas absorbsi sinar UV yang dimiliki fotokatalis (Sangchay, Sikong, & Kooptarnond, 2011).

TiO₂ memiliki beberapa struktur kristal (polymorph) yaitu anatas (tetragonal), rutil (tetragonal), dan brookite (ortorombik) (Mohamed, et al., 2014). Pada penelitian ini, lebih lanjut akan membahas semikonduktor TiO₂ rutil dan anatas karena memiliki sistem kristal yang sama yaitu tetragonal. Rutil memiliki bentuk yang lebih stabil dari anatas karena memiliki gap energy sebesar 3,02 eV sedangkan gap energy anatas sebesar 3,23 eV, sehingga anatas lebih bersifat reaktif daripada rutil (Holm, et al., 2019). Hal tersebut menyebabkan aktivitas fotokatalisis anatas

lebih baik dari pada aktivitas fotokatalisis rutil.

Aktivitas TiO₂ sebagai fotokatalis ditingkatkan dengan dapat membuat campuran antara anatas dan rutil. Hal ini dikarenakan fase campuran TiO₂ seperti campuran TiO₂ yang mengandung rutil dan anatas mempunyai aktivitas fotokatalisis yang lebih tinggi dari TiO₂ murni (Fischer, et al., 2017; Khatae, Aleboyeh , & Aleboyeh, 2009; Su, et al., 2011). Penelitian dari Kim, et al. (2001) dan Yu & Wang (2010) menyatakan campuran dari anatas dan rutil memiliki aktivitas fotokatalisis yang lebih besar karena adaya efek sinergistik (synergistic effect) seperti transfer elektron permukaan, dapat menyebabkan rekombinasi antara elektron dan lubang positif menjadi berkurang, dan dengan adanya rutil dalam campuran tersebut dapat meningkatkan absropsi sinar pada TiO₂. Berdasarkan penelitian sebelumnya, rasio pebandingan massa dari campuran rutil dan anatas memberikan aktivitas van fotokatalitik yang paling baik adalah sebesar 30% rutile dan 70% anatase untuk pewarna organik yang besifat asam seperti pcoumaric acid (Bacsa & Kiwi,1998) dan Acid Blue 9 (AB9) (Khatae, Aleboyeh, & Aleboyeh, 2009). Rasio tersebut sama dengan Degussa P25 yang merupakan fase campuran dari TiO₂ yang dijual di pasaran. Hasil penelitian Su, et al., (2011) menunjukkan bahwa rasio perbandingan rutil anatas yang memiliki aktivitas fotokatalitik paling tinggi adalah 40% rutil dan 60% anatas pada reaksi fotokatalisis metilen biru. Perbedaan aktivitas fotokatalitik tersebut disebabkan oleh jenis zat warna yang berbeda.

Selain dengan memodifikasi rasio campuran TiO_2 , aktivitas fotokatalisis dapat ditingkatkan dengan memodifikasi elektron permukaan dengan penambahan logam mulia. Kombinasi antara semikonduktor dan nanopartikel logam mulia menjadi salah satu strategi baru dalam pengembangan fotokatalis sinar tampak karena dapat meningkatkan efisiensi fotokatalisis dengan cara memperpanjang panjang gelombang cahaya dari sinar UV menjadi sinar tampak (Lee, et al., 2020). Penambahan logam mulia bertujuan untuk mencegah terjadinya rekombinasi elektron dan lubang positif pada semikonduktor karena logam mulia bertindak sebagai akseptor elektron yang baik yaitu dapat menangkap elektron di dekat pita konduksi dan dapat meningkatkan eksitasi elektron (Akel, et al., 2018; (Barrientos, et al., 2018; Uribe, et al., 2018)). Logam mulia yang sering digunakan sebagai bahan tambahan pada semikonduktor adalah Pt, Ag, Au, Cu, Pd, Ni Co, dan Sn (Gustiani, et al., 2014). Oleh karena itu, pada penelitian ini dilakukan komparasi reaksi fotokatalisis antara semiknduktor TiO₂ anatas 50%-rutil 50% dengan TiO₂ anatas tersupport AgI pada reaksi degradasi zat warna remazol red.

Metode Penelitian

Alat

Peralatan yang digunakan pada penelitian ini antara lain lampu Xenon 100 Watt (panjang gelombang 250-600 nm) (Indonesia), spektrofotometer UV-Vis Evolution[™] 201 (USA), Spectronic[™] 200 (USA), neraca analitik Radwag AS 220.R2 (USA), alat-alat gelas.

Bahan

Bahan yang digunakan dalam penelitian ini antara lain: kristal TiO_2 anatas tersupport AgI, kristal TiO_2 anatas 50% - rutil 50%, akuades,dan remazol red.

Prosedur kerja Preparasi larutan Remazol red

Preparasi larutan Remazol red diawali dengan menimbang 0,05 gram Remazol red, kemudian dilarutkan dalam 500 mL air sehingga diperoleh larutan induk larutan remazol red dengan konsentrasi 100 ppm. Larutan induk tersebut diencerkan menjadi larutan standar 5 ppm, 10 ppm, 15 ppm dan 20 ppm.

Preparasi fotokatalis TiO₂ anatas tersupport AgI dan TiO₂ anatas 50% rutil 50%

Preparasi fotokatalis TiO_2 anatas tersupport AgI dan TiO_2 anatas 50%-rutil 50% telah dilakukan pada penelitian sebelumnya mengacu pada jurnal Sangchay, Sikong, & Kooptarnond (2011) untuk preparasi TiO_2 anatas tersupport AgI dan Khatae, Aleboyeh, & Aleboyeh (2009) untuk preparasi fotokatalis TiO_2 anatas 50% - rutil 50% dengan sedikit modifikasi kadar anatas-rutil.

Pembuatan Kurva Standar

Larutan standar remazol red 10 ppm vang telah dibuat, diukur panjang gelombangnya untuk mengetahui panjang gelombang maksimum menggunakan spektrofotometer UV-Vis dan didapat panjang gelombang maksimum larutan Remazol red yaitu 558nm. Larutan standar 5 ppm, 10 ppm, 15 ppm dan 20 ppm dianalisis absorbansinva dengan menggunakan spectronic 200 pada panjang gelombang 558nm.

Fotodegradasi Remazol Red menggunakan TiO₂ anatas tersupport AgI dan TiO₂ anatas 50% - rutil 50% sebagai fotokatalis

Eksperimen fotokatalisis dilakukan dengan cara sebagai berikut: Larutan remazol red 10 ppm masing-masing 10 mL dimasukkan ke dalam tiga tabung reaksi A, B dan C. Ke dalam Tabung reaksi A, ditambahkan 6 mg kristal TiO₂ anatas tersupport AgI. Kristal TiO₂ anatas 50% - rutil 50% sebanyak 6 mg (massa bahan berdasarkan kondisi optimum) ditambahkan ke dalam tabung reaksi B. Tabung reaksi C digunakan sebagai larutan blangko (tanpa katalis). Ketiga

reaksi tersebut diradiasi tabung menggunakan lampu Xenon 100 Watt pada selang waktu 15 menit, 30 menit, 45 menit, 60 menit, 75 menit, 90 menit (waktu radiasi berdasarkan kondisi optimum). Larutan difotokatalisis, yang telah kemudian dianalisis absorbansinya dengan menggunakan Spectronic 200 pada panjang gelombang 558nm. Hasil pembacaan absorbansi dikonversi ke dalam konsentrasi (ppm) dengan bantuan kurva standar remazol red.

Hasil Penelitian dan Pembahasan

Reaksi fotokatalisis merupakan reaksi degradasi dengan empat komponen utama, yaitu sumber cahaya (foton), senyawa target, oksigen dan fotokatalis (Wijava, et al., 2006). Dalam penelitian ini, sumber cahaya berasal dari lampu Xenon 100 Watt dengan panjang gelombang 250-600 nm, senyawa target yang digunakan adalah zat warna remazol red dalam larutan berair, oksigen sebagai penangkap elektron yang berasal dari pelarut air dan TiO2 anatas tersupport AgI dan TiO₂ anatas 50% - rutil 50% sebagai agen fotokatalisis. Analisis dilakukan untuk mengetahui fotokatalis mana yang memberikan pengaruh maksimum pada degradasi zat warna remazol red

Degradasi senyawa remazol red terjadi karena adanya fotokatalis TiO2 anatas tersupport AgI dan TiO₂ anatas 50% - rutil 50% dengan bantuan sinar lampu Xenon 100 Watt. Fotodegradasi remazol red dilakukan dengan cara mendiamkan larutan pada tabung A, tabung B, dan tabung C, kemudian diletakkan pada sebuah box yang disinari lampu Xenon 100 Watt. Tabung A berisi 6 mg TiO₂ anatas tersupport AgI yang terdispersi dalam 10 mL larutan remazol red. Tabung B berisi 6 mg TiO₂ anatas 50% - rutil 50% yang terdispersi dalam 10 mL larutan remazol red. Tabung C berisi 10 mL larutan remazol red sebagai larutan blangko (tanpa katalis). Pengukuran absorbansi dilakukan pada selang waktu 15, 30, 45, 60, 75 dan 90 menit. Berdasarkan ketiga perlakuan tersebut,

dapat digunakan untuk memprediksi fotokatalis mana yang mampu menyebabkan degradasi maksimum pada zat warna remazol red. Sebelum pengukuran absorbansi dilakukan. terlebih dahulu dilakukan penentuan panjang gelombang maksimum supaya pengukuran absorbansi dilakukan dalam kondisi optimum. Berdasarkan pengukuran panjang gelombang maksimal (λ_{max}) yang disajikan pada Gambar 1, diperoleh panjang gelombang maksimum untuk zat warna remazol red adalah 558 nm. Panjang gelombang ini berada pada daerah visibel sehingga mata dapat melihat warna merah pada larutan remazol red. Oleh karena itu, pengukuran absorbansi pada setiap sampel, dilakukan pada panjang gelombang 558 nm.

Fotodegrasasi remazol red menggunakan fotokatalis TiO₂ anatas tersupport AgI dan TiO₂ anatas 50% - rutil 50% melalui adsorpsi remazol red ke permukaan partikel fotokatalis disertai dengan proses oksidasi fotokatalisis remazol red. Andari & Wardhani (2014) menyatakan bahwa oksidator dan reduktor pada permukaan fotokatalis tersebut menyerang zat warna remazol red sehingga menghasilkan CO₂ dan H₂O serta beberapa asam dengan konsentrasi yang rendah. Reaksi degradasi remazol red disajikan pada persamaan reaksi berikut.

$$C_{19}H_{18}O_{11}N_2S_3 + \frac{47}{2}O_2 \longrightarrow 3H_2SO_4 + HNO_2$$

+ 19CO_2 + 6H_2O

Berdasarkan persamaan reaksi tersebut, senyawa remazol red akan terurai menjadi beberapa asam dengan konsentrasi rendah, CO₂, dan H₂O yang tidak berwarna. Oleh karena itu, ketika larutan remazol red mengalami degradasi, warna larutan akan pudar. Gambar menjadi persentase pengurangan remazol red lawan waktu baik tanpa katalis, dengan fotokatalis TiO₂ anatas tersupport AgI dan TiO₂ anatas 50% - rutil 50% disaiikan pada Gambar 2.

S.R.D. Astuti, A.R.P. Sari, Karlinda

Gambar 2. Grafik Persentase Pengurangan Remazol Red Lawan Waktu

Remazol red dapat terdegradasi walaupun tanpa adanya fotokatalis, tetapi proses tersebut memakan waktu yang cukup lama. Dengan adanya fotokatalis, proses degradasi larutan remazol red semakin cepat. Gambar 2 menunjukkan bahwa larutan remazol red dengan fotokatalis TiO₂ anatas tersupport AgI mengalami degradasi paling besar dibandingkan dengan larutan remazol red dengan fotokatalis TiO₂ anatas 50% - rutil 50% dan tanpa katalis.

Aktivitas fotokatalisis pada TiO_2 bergantung pada struktur kristal, ukuran kristal, luas permukaan dan struktur pori. TiO₂ yang sering digunakan sebagai fotokatalis adalah anatas dan rutil. Fotokatalis TiO₂ akan teraktivasi ketika permukaan fotokatalis dikenai radiasi sinar UV. Radiasi sinar UV mengakibatkan terjadinya loncatan elektron pada TiO2 dari valensi ke pita konduksi dan pita mengakibatkan terjadinya kekosongan valensi sehingga terbentuk lubang positif (h+). Energi yang dibutuhakan untuk eksitasi elektron relatif tinggi karena setara dengan gap antara pita valensi dan pita konduksi yang relatif besar yaitu 3,0 eV untuk rutil dan 3,2 eV untuk anatas, sehingga anatas lebih aktif dibandingkan rutil (He, et al., 2016; Holm, et al., 2019). Campuran antara anatas dan rutil telah terbukti memiliki aktivitas fotokatalisis yang lebih tinggi dibandingkan aktivitas anatas murni dan rutil murni (Mohamed, et al, 2014; Scanlon, et al., 2013).

Pada penelitian ini campuran anatas rutil yang digunakan sebagai fotokatalis pada degradasi larutan remazol red adalah TiO_2 anatas 50% - rutil 50% yang telah disintesis pada penelitian sebelumnya. Mekanisme fotokatalisisis dari TiO_2 anatase 50% - rutile 50% dijelaskan sebagai berikut.

- $TiO_2 + h\upsilon \rightarrow h^+ + e^-$
- $\mathrm{h}^{\scriptscriptstyle +} + \mathrm{OH}^{\scriptscriptstyle -} \to \mathrm{OH} \bullet$
- $OH \bullet + senyawa azo (remazol red) \rightarrow CO_2 + H_2O$

Saat TiO_2 anatas 50% - rutil 50% dikenai radiasi sinar lampu Xenon 100 Watt yang memiliki energi yang melebihi energi celah pita akan menyebabkan terjadinya eksitasi elektron dari pita valensi ke pita konduksi menghasilkan e- dan lubang positif h⁺. Lubang positif akan bereaksi dengan hidroksida dari oksida titanium yang berada dalam larutan dan membentuk radikal hidroksida yang berperan sebagai oksidator untuk mengoksidasi remazol red menjadi CO₂ dan H₂O serta beberapa asam. Radikal hidroksida juga dapat terbentuk dengan adanya elektron yang berada di permukaan fotokatalis TiO₂. Elektron akan terjebak dalam hidroksida logam dan akan bereaksi dengan penangkap elektron dalam larutan sehingga membentuk radikal hidroksil (•OH) superoksida $(\bullet 0_2)$ atau yang akan mengoksidasi remazol red dalam larutan. Radikal-radikal tersebut akan terus terbentuk selama fotokatalis TiO₂ dikenai radiasi sinar dan akan menyerang remazol

red dalam larutan sehingga remazol red akan mengalami degradasi. Skema mekanisme

elektron pada semikonduktor TiO_2 anatas 50% - rutil 50% disajikan pada Gambar 3.

Gambar 3. Mekanisme elektron pada semikonduktor TiO₂ anatase 50% - rutile 50% (Kakuma, Nosaka, & Nosaka, 2015)

Berdasarkan Gambar 3, diketahui bahwa terdapat perbedaan mekanisme elektron pada semikonduktor TiO₂ anatas dan rutil. Perbedaan tersebut terletak pada proses pembentukan radikal OH• pada anatas dan rutil yaitu jarak ikatan Ti-Ti dari atom Ti yang berbeda dua dalam pembentukan jembatan OH (Kakuma, Nosaka, & Nosaka, 2015). Anatase memiliki jarak ikatan Ti-Ti yang lebih besar daripada rutile, sehingga pada anatase lebih mudah melepaskan radikal OH• daripada rutile. Oleh karena itu, semakin lama waktu penyinaran, foton yang mengenai fotokatalis semakin banyak maka remazol red yang terdegradasi semakin banyak.

Berdasarkan Gambar 2, Persentase dgradasi senyawa remazol red dengan fotokatalis TiO₂ anatas 50%- rutil 50% lebih rendah jika dibandingkan dengan persentase degradasi senyawa remazol red dengan fotokatalis TiO₂ anatas tersupport AgI. Hal ini dikarenakan fungsi AgI pada TiO2 anatas tersupport AgI adalah untuk meningkatkan aktivitas fotokatalisis dari TiO2. Reddy, Venugopal, & Subrahmanyam, (2007)menyatakan bahwa keberadaan atom Ag dalam TiO₂ menyebabkan peningkatan pembentukan radikal OH• dari oksidasi H₂O. Keberadaan Ag dalam TiO₂ dibawah sinar menyebabkan tingkat fermi TiO₂ anatas

tersupport Ag menjadi lebih tinggi (Reddy, Venugopal, & Subrahmanyam, 2007). Hal ini menyebabkan transfer elektron dari TiO₂ menuju partikel Ag yang melapisi TiO₂, sehingga membentuk lapisan batas antara Ag dan TiO₂. Oleh karena itu Ag akan membantu dalam pelepasan elektron dan pembentukan lubang positif (h⁺) dengan cara fotoelektron. Berikut ini adalah mekaisme pelepasan elektron dan pembentukan lubang positif pada TiO₂ tersupport AgI.

$$TiO_2 + h\upsilon \rightarrow e^- + h^+$$

Ag + e^- $\rightarrow e^-_{Ag}$

Hal ini memungkinkan pita valensi (h⁺) bereaksi dengan OH^{-} yang terserap atau terabsorp pada TiO_2 sehingga menghasilkan radikal OH^{\bullet} .

$OH^- + h^+ \rightarrow OH^-$

Proses redoks terjadi ketika senyawa remazol red teradsorpsi di permukaan semikonduktor TiO₂. Senyawa organik remazol red adalah donor elektron dan jika berada dalam air dapat teroksidasi dengan cara bereaksi langsung dengan lubang positif pada pita valensi atau bereaksi dengan radikal OH yang terbentuk dari oksidasi H₂O. Elektron pada pita konduksi akan bereaksi dengan akseptor elektron dan memicu reaksi reduksi. Lubang positif pada pita valensi akan mengalami oksidasi dan akan bereaksi dengan donor elektron dari senyawa

39

remazol red. Skema mekanisme elektron pada semikonduktor TiO₂ tersupport AgI disajikan pada Gambar 3.

Gambar 3. Mekanisme elektron pada semikonduktor TiO₂ tersupport AgI (Reddy, Venugopal, & Subrahmanyam, 2007)

Logam Ag pada semikonduktor TiO_2 berfungsi untuk meningkatkan aktivitas fotokatalitik semikonduktor dan meminimalkan rekombinasi elektron dan lubang positif dengan cara membantu transfer elektron di permukaan semikonduktor ke lingkungan yaitu zat warna (Gustiani, *et al.*, 2014). Dengan adanya Ag pada semikonduktor TiO_2 maka reaksi fotokatalitik akan berjalan semakin cepat

dan efisien. Reaksi tersebut menentukan aktivitas reaksi oksidasi pada senyawa remazol red. Reaksi oksidasi pada remazol red akan terus terjadi selama TiO_2 anatas tersupport AgI dikenai radiasi sinar. Semakin bertambahnya waktu penyinaran radiasi, maka foton yang mengenai fotokatalis TiO_2 anatas tersupport AgI akan semakin banyak, sehingga remazol red yang terdegradasi akan semakin banyak.

Gambar 4. Grafik Ln Ct/Co lawan waktu pada fotokatalisis remazol red dengan sistem fotokatalis TiO_2 anatase 50% - rutile 50% dan TiO₂ tersupport AgI

Grafik ln Ct/Co lawan waktu dibuat menggunakan model kinetika reaksi orde kesatu untuk mengetahui nilai konstanta laju reaksi (k) degradasi remazol red dengan fotokatalis TiO_2 anatas 50%-rutil 50% dan TiO_2 anatas tersupport AgI. Konstata laju

40

dapat digunakan reaksi juga untuk membedakan reaksi degradasi mana yang berlangsung lebih cepat. Harga k untuk setiap reaksi degradsi diperoleh dari kemiringan (slope) pada persamaan linier Gambar 4. Harga k untuk reaksi fotodegradasi remazol red dengan fotokatalis TiO₂ anatas tersupport AgI diperoleh sebesar 0,0029 menit⁻¹ dan harga k untuk fotodegradasi remazol red dengan fotokatalis TiO₂ anatas 50%-rutil 50% sebesar 0,0023 menit-1. Berdasarkan hasil konstanta reaksi orde satu tersebut, dapat dituliskan persamaan laju reaksi untu reaksi degradasi remazol red dengan fotokatalis TiO₂ anatas tersupport AgI dan TiO₂ anatas 50%-rutil 50% sebagai berikut.

- Persamaan laju reaksi degradasi remazol red dengan fotokatalis TiO₂ anatas tersupport AgI
 - $r = 0,0029 \text{ menit}^{-1}[C_{19}H_{18}O_{11}N_2S_3]$
- 2. Persamaan laju reaksi degradasi remazol red dengan fotokatalis TiO_2 anatas 50%-rutil 50%

 $r = 0,0023 \text{ menit}^{-1}[C_{19}H_{18}O_{11}N_2S_3]$

laju reaksi degradasi Konstanta remazol red dengan TiO₂ anatas tersupport AgI lebih besar dari konstanta laju reaksi degradasi remazol red dengan TiO₂ anatas 50%-rutil 50%. Hal ini menunjukkan bahwa semakin besar nilai konstanta reaksi maka reaksi degradasi laiu semakin besar. sehingga persentase degradasi juga semakin besar. Oleh karena itu persen degradasi remazol red pada sistem sistem fotokatalis TiO₂ tersupport AgI lebih besar daripada pada sistem fotokatalis TiO₂ anatase 50% rutile 50% dan tanpa katalis. Senada dengan hasil penelitian oleh Sangchay, Sikong, & Kooptarnond (2011) dan Gustiani, et al. (2014) yang menyatakan bahwa reaksi fotokatalitisis dengan fotokatalis TiO₂ tersupport Ag memiliki harga konstanta laju reaksi yang lebih besar daripada dengan fotokatalis TiO2 dan P25. Semakin besar konstanta laju reaksi, maka reaksi akan berjalan semakin cepat.

Simpulan

Berdasarkan hasil penelitian, dapat disimpulkan bahwa TiO₂ anatas tersupport AgI lebih efektif dalam bertindak sebagai fotokatalis pada reaksi degradasi remazol red dibandingkan dengan semikonduktor TiO₂ anatas 50%-rutil 50%. Persentase degradasi remazol red pada sistem TiO₂ anatas tersupport AgI lebih besar daripada pada sistem fotokatalis TiO₂ anatas 50%rutile 50% dan tanpa katalis. Konstanta laju reaksi degradasi remazol red pada sistem TiO₂ anatas tersupport AgI sebesar 0,0029 menit⁻¹ sedangkan konstanta laju reaksi degradasi remazol red pada sistem fotokatalis TiO₂ anatas 50%-rutil 50% sebesar 0,0023 menit⁻¹.

Daftar Pustaka

- Akel , S., Dillert, R., Balayeva , N.O., Boughaled, R., Koch, J., El Azzouzi, M., & Bahnemann, D. W. (2018).
 Ag/Ag₂O as a co-catalyst in TiO₂ photocatalysis: Effect of the cocatalyst/photocatalyst mass ratio. *Catalysts*, 8(647), 1-19.
- Anbalagan, A. (2012). Combination of biological and photochemical treatment for degradation of azo dyes. Tesis, tidak dipublikasikan. Uppsala University. Uppsala.
- Andari, N.D., & Wardhani, S. (2014). Fotokatalisis TIO₂-zeolit untuk degradasi metilen biru. *Chem.Prog*, 7(1), 9-14.
- Ara, N. J., Hasan, A., Rahman, M.A., Salam, A., & Alam, S. (2013). Removal of remazol red from textile waste water using treated sawdust - An effective way of effluent treatment. *Bangladesh Pharmaceutical Journal*, 16(1), 93-98.
- Bacsa, R.R., & Kiwi, J. (1998). Effect of rutile phase on the photocatalytic properties of nanocrystalline titania during the

degradation of p-coumaric acid. Appl. Catal. B, 16, 19–29.

- Barrientos, L., Allende, P., Bercero, M.A., Becerra, J. R., & Jensen, L. C. (2018). Controlled Ag-TiO₂ hetero-junction by combining physical vapor deposition and bifunctional surface modifiers. *Journal of Physics and Chemistry of Solids, 119*, 147-146.
- Bubacz, K., Choina, J., Dolat, D., & Morawski, A. W. (2010). Methylene blue and phenol photocatalytic degradation on nanoparticles of anatase TiO₂. *Polish J. of Environ. Stud, 19*(4), 685-691.
- Carini Jr, G., Parrino, F., Palmisano, G., Scandura, G., Citro, I., & Calogero, A. (2015). Nanostructured anatase TiO₂ densified at high pressure as advanced visible light photocatalysts. *Photochemical & Photobiological Sciences, 14*, 1685-1693.
- de Sousa, M.L., de Moraes, P.B., Lopes, P. R., Montagnolli, R. N., de Angelis, D. F., & Bidoia, E. D. (2012). Contamination by remazol red brilliant dye and its impact in aquatic photosynthetic microbiota. *Environmental Management and Sustainable Development, 1*(2), 129-138.
- Fischer, K., Gawel, A., Rosen, D., Krause, M., Latif, A. A., Griebel, J., Prager, A., Schulze, A. (2017). Low-temperature synthesis of anatase/rutile/brookite TiO₂ nanoparticles on a polymer membrane for photocatalysis. *Catalysts*, 7(209), 1-14.
- Gustiani, S., Notodarmodjo, S., Syafila, M., & Radiman, C. L. (2014). Dekolorisasi fotokatalitik zat warna remazol black 5 dengan menggunakan nanopartikel TiO₂ dan Ag yang termobilisasi pada nanofiber selulosa bakterial (SB). *Arena Tekstil, 29*(2), 107-114.

- He, X., Sanders, S., Aker, W.G., Aker, Y., Douglas, J., & Hwang, H. (2016). Assessing the effect of surface-bound humic acid on the phototoxicity of anatase and rutile TiO₂ nanoparticles in vitro. *Journal of Environmental Sciences, 42*, 50-60.
- Holm, A., Hamandi, M., Simonet, F., Jouguet,
 B., Dappozze, F., & Guillard, C. (2019). Impact of rutile and anatase phase on the photocatalytic decomposition of lactic acid. *Applied Catalysis B: Environmental, 253*, 96-104.
- Islam, M.A., Uddin, M.R., Amin, M.S., Haque, M.I., & Molla, M.S. (2013). Design and operation of a photocataytic reactor: A study of dye (methylene) removal process. *Journal of Chemical Engineering*, 28(1), 41-44.
- Kakuma, Y., Nosaka, A.Y., & Nosaka, Y. (2015). Difference in TiO₂ photocatalytic mechanism between rutile and anatase studied by detections of active oxygen and surface species in water. *Physical Chemistry Chemical Physics*, 17, 18691-18698.
- Khalik, W.F., Ho, L.N., Ong, S. A., Wong, Y.S., Yusoff, N.A., & Ridwan, F. (2015). Decolorization and mineralization of batik wastewater through solar photocatalytic process. *Sains Malaysiana*, 44(4), 607-612.
- Khatae, A. R., Aleboyeh , H., & Aleboyeh, A. (2009). Crystallite phase-controlled preparation, characterisation and photocatalytic properties of titanium dioxide nanoparticles. *Journal of Experimental Nanoscience*, 4(2), 121-137.
- Kim, S. J., Lee, E. G., Park, S. D., Jeon, C. J., Cho, Y. H., Rhee, C. K., & Kim, W. W. (2001). Photocatalytic effects of rutile phase TiO₂ ultrafine powder with high specific surface area obtained by a

Copyright © 2021 WJC | ISSN 2621-5985 (online) | ISSN 2549-385X (print) Volume 4, Issue 1, 2021

homogeneous precipitation process at low temperatures. J. Sol-Gel Sci. Technol, 22, 63–74.

- Lee, S. Y., Kang, D., Jeong, S., Do, H. T., & Kim, J. H. (2020). Photocatalytic degradation of rhodamine B dye by TiO₂ and gold nanoparticles supported on a floating porous polydimethylsiloxane sponge under ultraviolet and visible light irradiation. *ACS Omega*, *5*, 4233–4241.
- Mohamed, M.A., Salleh, W.N., Jaafar, J., & Yusof, N. (2014). Preparation and photocatalytic activity of mixed phase anatase/rutile TiO₂ nanoparticles for phenol degradation. *Jurnal Teknologi*, 70(2), 65-70.
- Pawar, M., Sendoğdular, S.T., & Gouma, P. (2018). A brief overview of TiO₂ photocatalyst for organic dye remediation: Case study of reaction mechanismsiInvolved in Ce-TiO₂ photocatalysts system. *Journal of Nanomaterials*, 2018, 1-13.
- Priya, E.S., Selvan, P.S., & Umayal, A.N. (2015). Biodegradation studies on dye effluent and selective remazol dyes by indigenous bacterial species through spectral characterisation. *Desalination* and Water Treatment, 55(1), 241-251.
- Reddy, M.P., Venugopal, A., & Subrahmanyam, M. (2007). Hydroxyapatite-supported Ag–TiO₂ as escherichia coli disinfection photocatalyst. *Water Research, 41*, 379-386.
- Saggioro, E.M., Oliveira, A.S., Pavesi, T., Maia, C.G., Ferreira, L.F., & Moreira, J.C. (2011). Use of titanium dioxide photocatalysis on the remediation of model textile wastewaters containing azo dyes. *Molecules*, 16, 10370-10386.
- Sangchay, W., Sikong, L., & Kooptarnond, K. (2011). Comparison of photocatalytic

reaction of commercial P25 and synthetic TiO₂-AgCl nanoparticles. *Procedia Engineering* (pp. 590-596). Amsterdam: Elsevier.

- Saratale, R.G., Gandhi, S.S., Purankar, M.V., Kurade, M.B., Govindwar, S. P., Oh, S.E., & Saratale, G.D. (2013). Decolorization and detoxification of sulfonated azo dye C.I. Remazol Red and textile effluent by isolated Lysinibacillus sp. RGS. *Journal of Bioscience and Bioengineering*, 115(6), 658-667.
- Scanlon, D.O., Dunnill, C.W., Buckeridge, J., Shevlin, S.A., Logsdail, A.J., Woodley, S.M., Catlow, C.R.A., Palgrave, R.G., Parkin, I.P., Watson, G.W., Keal, T.W., Sherwood, P., Walsh, A., Sokol, A.A. (2013). Band alignment of rutile and anatase TiO₂. *Nature Materials*, 12(9), 798-801.
- Su, R., Bechstein, R., Vang, R. T., Sillassen, M., Esbjornsson, B., Palmqvis, A., & Besenbacher, F. (2011). How the anatase-to-rutile ratio influences the photoreactivity of TiO₂. *The Journal of Physical Chemistry*, 115, 24287-24292.
- Uribe, C.D., Viloria, J., Cervantes, L., Vallejo, W., Navarro, K., Romero, E., & Quiñones, C. (2018). Photocatalytic activity of Ag-TiO₂ composites deposited by photoreduction under UV irradiation. *International Journal of Photoenergy*, 2018, 1-8.
- Widihati, I.A., Diantariani, N.P., & Nikmah, Y.F. (2011). Fotodegradasi metilen biru dengan sinar UV dan katalis Al₂O₃. *Jurnal Kimia*, 5(1), 31-42.
- Wijaya, K., Wijaya, E., Fatimah, I., Fatimah, I., & Rudatiningsih. (2006).
 Photodegradation of alizarin s dye using TiO₂-zeolite and UV radiation. *Indo. J. Chem.*, 6(1), 32-37.

43

- S.R.D. Astuti, A.R.P. Sari, Karlinda
- Yang, S.Y., Chen, Y.Y., Zheng, J.G., & Cui, Y.J. (2006). Enhanced photocatalytic activity of TiO₂ by surface fluorination in degradation of organic cationic compound. *Journal of Environmental Science*, 19(1), 86-89.
- Yu, J., & Wang, B. (2010). Effect of calcination temperature on morphology and photoelectrochemical properties of anodized titanium dioxide nanotube arrays. *Appl. Catal. B Environ*, 94, 295–302.