Implementasi Backpropagation ANN dan Algoritma Genetika Terhadap Estimasi Pendapatan Agen Ekspedisi Pengiriman Barang
DOI:
https://doi.org/10.21580/wjit.2023.5.1.14452Keywords:
Income, Forecasting, Backpropagation Artificial Neural Network, Genetic AlgorithmAbstract
Income is the amount of income received by a person or resident for their work performance during a certain period, whether daily, weekly, monthly or yearly. This research implements the Backpropagation Artificial Neural Network and Genetic Algorithm methods to estimate the income of JNE Express Sekaran agents. Artificial Neural Network and Genetic Algorithm are modern forecasting methods that produce the smallest and most accurate error values. Based on the research that has been done, the Backpropagation Artificial Neural Network method produces the best architectural model, namely 4-10-1 with 4 as the input layer, 10 as hidden neurons, and 1 as the output layer. With epoch 487 obtains an MSE 0,150807. While the Genetic Algorithm method produces the best fitness value is 10209,02 with a population size of 200, crossover probability 0,8, mutation probability 0,03 in the 498th generation and obtains an MSE value of 0,000098. So, it can be predicted that income for the following month is October 2021 of IDR 25.011.603, November 2021 of IDR 20.920.021, and December 2021 of IDR 50.553.019
Downloads
References
Abdullah, M. 2015. Metode Penelitian Kuantitatif. Yogyakarta: Aswaja Pressindo.
Azise, N., Andono, P. N., & Pramunendar, R. A. (2019). Prediksi Pendapatan Penjualan Obat Menggunakan Metode Backpropagation Neural Network dengan Algoritma Genetika Sebagai Seleksi Fitur. Jurnal Cyberku, 15, 142–154. http://research.pps.dinus.ac.id/index.php/Cyberku/article/view/91
Jayusman, I., & Shavab, O. A. K. 2020. Aktivitas Belajar Mahasiswa dengan Menggunakan Media Pembelajaran Learning Management System (LMS) Berbasis Edmodo Dalam Pembelajaran Sejarah. Jurnal Artefak, 7(1): 13.
Kusuma, E. P., & Pratama, B. (2020). Laporan Keuangan Pada PT Multipanel Intermitra Mandiri. 1–19.
Rufiyanti, D. E. 2015. Implementasi Jaringan Saraf Tiruan Backpropagation dengan Input Model Arima untuk Peramalan Harga Saham, 1-124.
Santosa, Budi. 2017. Konsep Dasar Optimasi Pengantar Metaheuristik Implementasi dengan Matlab, 09-20 & 177-197.
Simanjuntak, J. (2021). Perkembangan Matematika dan Pendidikan Matematika Di Indonesia. Sepren, 2(2), 32–39. https://doi.org/10.36655/sepren.v2i2.512
Steven. 2014. Analisis Pengaruh E-Commerce Strategy, Service, Performance Terhadap Loyalitas Pelanggan dan Kepuasan Pelanggan Sebagai Variabel Intervening. Journal Of Management. 2.(2).
Sukirno. 2006. Mikro Ekonomi Teori Pengantar. Jakarta: Unit Penerbit PT. Raja Grafindo Persada.
Syaharuddin, Pujiana, E., Sari, I. P., Mardika, V. M., & Putri, M. (2020). Analisis Algoritma Back Propagation Dalam Prediksi Angka Kemiskinan Di Indonesia. J. Pendidik. Berkarakter, 3(1), 11–17.
Syarif, Admi. 2014. ALGORITMA GENETIKA: Teori dan Aplikasi Edisi 2. Yogyakarta: Graha Ilmu.
Zukhri, Zainudin. 2014. Algoritma Genetika : Metode Komputasi Evolusioner untuk Menyelesaikan Masalah Optimasi, Seno, Ed. Yogyakarta: Andi
Downloads
Published
Issue
Section
License
The copyright of the received article shall be assigned to the journal as the publisher of the journal. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to the published articles. Authors are allowed to use their articles for any legal purposes deemed necessary without written permission from the journal with an acknowledgment of initial publication to this journal.
Licensing
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.