Implementasi Backpropagation ANN dan Algoritma Genetika Terhadap Estimasi Pendapatan Agen Ekspedisi Pengiriman Barang

Authors

DOI:

https://doi.org/10.21580/wjit.2023.5.1.14452

Keywords:

Income, Forecasting, Backpropagation Artificial Neural Network, Genetic Algorithm

Abstract

Income is the amount of income received by a person or resident for their work performance during a certain period, whether daily, weekly, monthly or yearly. This research implements the Backpropagation Artificial Neural Network and Genetic Algorithm methods to estimate the income of JNE Express Sekaran agents. Artificial Neural Network and Genetic Algorithm are modern forecasting methods that produce the smallest and most accurate error values. Based on the research that has been done, the Backpropagation Artificial Neural Network method produces the best architectural model, namely 4-10-1 with 4 as the input layer, 10 as hidden neurons, and 1 as the output layer. With epoch 487 obtains an MSE 0,150807. While the Genetic Algorithm method produces the best fitness value is 10209,02 with a population size of 200, crossover probability 0,8, mutation probability 0,03 in the 498th generation and obtains an MSE value of 0,000098. So, it can be predicted that income for the following month is October 2021 of IDR 25.011.603, November 2021 of IDR 20.920.021, and December 2021 of IDR 50.553.019

Downloads

Download data is not yet available.

Author Biographies

Ahmad Yusuf Naufal, UIN Walisongo Semarang

Mathematics Computation

Mohamad Tafrikan, UIN Walisongo Semarang

Mathematics Computation

Ariska Kurnia Rachmawati, UIN Walisongo Semarang

Mathematics Computation and Statistics

References

Abdullah, M. 2015. Metode Penelitian Kuantitatif. Yogyakarta: Aswaja Pressindo.

Azise, N., Andono, P. N., & Pramunendar, R. A. (2019). Prediksi Pendapatan Penjualan Obat Menggunakan Metode Backpropagation Neural Network dengan Algoritma Genetika Sebagai Seleksi Fitur. Jurnal Cyberku, 15, 142–154. http://research.pps.dinus.ac.id/index.php/Cyberku/article/view/91

Jayusman, I., & Shavab, O. A. K. 2020. Aktivitas Belajar Mahasiswa dengan Menggunakan Media Pembelajaran Learning Management System (LMS) Berbasis Edmodo Dalam Pembelajaran Sejarah. Jurnal Artefak, 7(1): 13.

Kusuma, E. P., & Pratama, B. (2020). Laporan Keuangan Pada PT Multipanel Intermitra Mandiri. 1–19.

Rufiyanti, D. E. 2015. Implementasi Jaringan Saraf Tiruan Backpropagation dengan Input Model Arima untuk Peramalan Harga Saham, 1-124.

Santosa, Budi. 2017. Konsep Dasar Optimasi Pengantar Metaheuristik Implementasi dengan Matlab, 09-20 & 177-197.

Simanjuntak, J. (2021). Perkembangan Matematika dan Pendidikan Matematika Di Indonesia. Sepren, 2(2), 32–39. https://doi.org/10.36655/sepren.v2i2.512

Steven. 2014. Analisis Pengaruh E-Commerce Strategy, Service, Performance Terhadap Loyalitas Pelanggan dan Kepuasan Pelanggan Sebagai Variabel Intervening. Journal Of Management. 2.(2).

Sukirno. 2006. Mikro Ekonomi Teori Pengantar. Jakarta: Unit Penerbit PT. Raja Grafindo Persada.

Syaharuddin, Pujiana, E., Sari, I. P., Mardika, V. M., & Putri, M. (2020). Analisis Algoritma Back Propagation Dalam Prediksi Angka Kemiskinan Di Indonesia. J. Pendidik. Berkarakter, 3(1), 11–17.

Syarif, Admi. 2014. ALGORITMA GENETIKA: Teori dan Aplikasi Edisi 2. Yogyakarta: Graha Ilmu.

Zukhri, Zainudin. 2014. Algoritma Genetika : Metode Komputasi Evolusioner untuk Menyelesaikan Masalah Optimasi, Seno, Ed. Yogyakarta: Andi

Downloads

Published

2023-09-07

Issue

Section

Articles