Klasifikasi Berita Hoax Dengan Menggunakan Metode Naive Bayes

Hery Mustofa*  -  Fakultas Sains dan Teknologi UIN Walisongo Semarang, Indonesia
Adzhal Arwani Mahfudh  -  , Indonesia

(*) Corresponding Author

Hoaxes contain false news or non-sourced news. Today, hoaxes are very widely spread through internet media. The development of information technology that has so quickly triggered the spread of hoax information through the internet has become uncontrolled. So we need an intelligent system that can classify hoax news content that is spread through internet media. The hoax classification process can be done through the preprocessing stage then weighting the word and classification using naive bayes. Measurements were made using the 10-ford cross validation method. The results obtained from these measurements, it is known that the value of fold 6 has the highest accuracy, which is equal to 85.28% which is classified as relevant documents as much as 307 and irrelevant as much as 53 or an error rate of 14.72%. While the average value based on hoax news and true news value precision 0.896 and recall 0.853

Keywords: hoax, klasifikasi, naive bayes, text minning

  1. Abraham, S. R. (2009). Effective Discretization and Hybrid Feature Selection Using Naive Bayesian Classifier For Medical Data Mining. International Journal of Computational Intelligence Research 4.
  2. Afriza, A., & Adisantoso, J. (2018). Metode Klasifikasi Rocchio untuk Analisis Hoax. Jurnal Ilmu Komputer Agri-Informatika, Volume 5 Nomor 1, 1-10.
  3. Asosiasi Penyelenggara Jasa Internet Indonesia (APJII) . (2017). Infografis Penetrasi dan Pengguna Internet Indonesia.
  4. Cahya, I. (2012). Menulis Berita di Media Massa. Citra Aji Pratama.
  5. Connoly, T. C., & Begg, C. E. (2015). Database System: A Practical Approach to Design, Implementation, and Management.
  6. Fauzi, A. (t.thn.). Text Mining 2017/2018. Diambil kembali dari http://malifauzi.lecture.ub.ac.id/2017/09/text-mining-20172018/
  7. Han, J. W., & Kamber, M. (2000). Data Mining: Concepts and Techniques.
  8. Han, J., & Kamber, M. (2006). Data Mining : Conceps and Techniques. San Francisco: Elsevier Inc.
  9. Kemendikbud, K. (2019, Juni 25). Hasil Pencarian - KBBI Daring . Diambil kembali dari https://kbbi.kemdikbud.go.id/entri/hoaks
  10. Minner, G., Delen, D., & Elder, J. (2012). Excerpt from: Practical Text Mining and Statistical Analysis for Non-Structured Text Data Applications.
  11. Pramudita, Y. D., Putro, S. S., & Makhmud, N. (2018). Klasifikasi Berita Olahraga Menggunakan Metode Naive Bayes dengan Enhanced Confix Stripping Stemmer. Jurnal Teknologi Informasi dan Ilmu Komputer, Vol. 5, No. 3, 269-276.
  12. Severin, W. J., & James, J. T. (1998). Communication Theories: Origins, Methode, Uses (2th ed). New York: Longman Inc.
  13. Ting, S. L., Ip, W. H., & Tsang, A. H. (2011). Is Naïve Bayes a Good Classifier for Document Classification? International Journal of Software Engineering and Its Applications, 5(3).
  14. Triawati, C. (2009). Metode Pembobotan Statical Concept Based unuk Klastering dan Kategorisasi Dokumen Berbahasa Indonesia. Institide Teknologi Telkom. Bandung.

Open Access Copyright (c) 2019 Walisongo Journal of Information Technology
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Walisongo Journal of Information Technology
Published by Department Information Technology
Faculty of Science and Technology UIN Walisongo Semarang

Jl Prof. Dr. Hamka Kampus III Ngaliyan Semarang 50185
Phone: 024-76433366
Website: https://fst.walisongo.ac.id/
Email: [email protected]

ISSN 2715-0143 (media online)
ISSN 2714-9048 (media cetak)

 

ISSN: 2714-9048 (Print)
ISSN: 2715-0143 (Online)
DOI : 10.21580/wjit

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Get a feed by atom here, RRS2 here and OAI Links here

View My Stats
apps