universitas kristen satya wacana - Indonesia
Analisis Algoritma Apriori untuk Mendukung Strategi Promosi Perguruan Tinggi
Every company and organization that wants to survive needs to determine the effectiveness of the right promotion strategy. Determination of the right promotion strategy will be able to reduce the cost of promotion and achieve the right promotional goals. One way that can be done to determine the promotion strategy is to use data mining techniques. Data mining techniques used in this case are using the Apriori algorithm. A priori algorithm is one of the classic data mining algorithms. A priori algorithms are used so that computers can learn the rules of association, look for patterns of relationships between one or more items in a dataset. This study is conducted by observing several research variables that are often considered by universities in determining their promotion goals, namely school, region, and department. The results of this study are in the form of interesting patterns resulting from data mining which is important information to support the right promotion strategy in getting new students.
Keywords: Apriori Algorithms, Data Maining, Promotion Strategy,
- Azimah, A., & Sucahyo, Y. G. (2007). Penggunaan Data Warehouse Dan Data Mining Untuk Data Akademik Sebuah Studi Kasus Pada Universitas Nasional. Jurnal Sistem Informasi MTI UI Vol. 3 – No. 2 – Oktober 2007 , 1-7.
- Febryantahanuji, Sembiring, I., & Purnomo, H. D. (2018). Pengambilan Keputusan Pegawai Tidak Tetap Menjadi Pegawai Tetap Dengan Decission Tree. Journal Of Informatics Education , 99-110.
- Iko, P. (2006). Pengantar Data Mining : Menambang Permata Pengetahuan di Gunung Data.
- Kang, M. K. (2016). Market Basket Analysis: Identify the changing trends of market data. Procedia Computer Science , 78-85.
- Kurniawati, A. (2014). Pemetaan Pola Hubungan Program Studi Dengan Algoritma Apriori. Edu Komputika Journal , 51-58.
- Luthfi, K. &. (2009). Algoritma Data Mining. Yogyakarta: Andi Publisher.
- PDDIKTI. (2019, 8 12). PDDIKTI. Retrieved 8 12, 2019, from PDDIKTI: https://forlap.ristekdikti.go.id/perguruantinggi/homegraphpt
- Prayitno. (2017). Ekstraksi Pola Hubungan Penerimaan Mahasiswa Baru Dengan Sebaran Wilayah Asal Sekolah Menggunakan ARM Algoritma Apriori. Jurnal Teknik Informatika dan Sistem InformasiVolume 3 Nomor 1 April 2017 , 46-56.
- Purwanti, D. W. (2018). Analisis Data Mining Dengan Algoritma Fp-Growth. Jurnal SIMTIKA Volume 1, No 1, September 2018| , 27-31.
- Risky, H. &. (2017). Penerapan Data Mining menggunakan Association Rule Untuk Mendukung Strategi Promosi Universitas Nusantara PGRI Kediri. Seminar Nasional Teknologi Informasi, Komunikasi dan Aplikasinya Volume 04, Tahun 2017 (pp. 138-142). kediri: SEKOLAH TINGGI INFORMATIKA DAN KOMPUTER INDONESIA (STIKI) MALANG.
- Rumaisa, F. (2012). Penentuan Association Rule Pada Pemilihan Program Studi. Seminar Nasional Aplikasi Teknologi Informasi 2012 (SNATI 2012). Yogyakarta: Universitas Islam Indonesia.
- Suharyadi, & Sediyono, E. (2017). Metode Microsoft Clustering untuk Meningkatkan Potensi Penerimaan Mahasiswa Baru . JURNAL SISTEM KOMPUTER , 37-48.
- Vaidya, J., & Clifton, C. (2002). Privacy Preserving Association Rule Mining in Vertically. KDD '02 Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 639-644). New York: ACMDL.
- Yani, H., & Jusia, P. A. (2018). Penerapan Association Rule Untuk Mendeskripsikan Pola Hubungan Antara Kota Kelahiran Mahasiswa Dengan Tingkat Kelulusan Mahasiswa Pada Stikom Dinamika Bangsa Jambi. Seminar Nasional Sistem Informasi 2018, 9 Agustus 2018 (pp. 1097-1104). Malang: Fakultas Teknologi Informasi – UNMER Malang.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.