Green Synthesis and Antibacterial Activity of Silver Nanoparticles: A Review

Authors

  • Asep Bayu Dani Nandiyanto Department of Chemistry Education, Faculty of Mathematics and Natural Sciences Education, Universitas Pendidikan Indonesia
  • Annisa Moza Nabila Department of Chemistry Education, Faculty of Mathematics and Natural Sciences Education, Universitas Pendidikan Indonesia
  • Faradhina Salfa Nindya Department of Chemistry Education, Faculty of Mathematics and Natural Sciences Education, Universitas Pendidikan Indonesia
  • Nur'aini Berliana Department of Chemistry Education, Faculty of Mathematics and Natural Sciences Education, Universitas Pendidikan Indonesia
  • Nur Shafa Oktaviani Department of Chemistry Education, Faculty of Mathematics and Natural Sciences Education, Universitas Pendidikan Indonesia
  • Selmi Fiqhi Khoiriah Department of Chemistry Education, Faculty of Mathematics and Natural Sciences Education, Universitas Pendidikan Indonesia
  • Tedi Kurniawan Community College of Qatar, Doha, Qatar

DOI:

https://doi.org/10.21580/wjc.v5i2.10008

Keywords:

Green synthesis, Silver nanoparticle, particle size, Antibacterial

Abstract

The purpose of this study was to determine the effect of silver nanoparticles (AgNPs) from different green synthesis medium and their various particle sizes on antibacterial activity. The article review method compares the results of 11 studies obtained from the PubMed database, Web of Science, and ScienceDirect indexed by Scopus in the last five years. The search was conducted based on the phrases nanoparticles, antibacterial, Green synthesis, and AgNPs. Green synthesis of AgNPs with various plant extracts produces different sizes of nanoparticles. The smallest size AgNPs were obtained in the range of 5-15 nm and an average of 13 nm extracted using the leaves of the Pacific Yew tree (Taxus brevifolia). Meanwhile, AgNPs with the best antibacterial effectiveness were obtained from the Blume flower extract (Wedelia urticifolia) measuring less than 30 nm providing a zone of inhibition for S. aureus, K. pneumoniae, E. coli, and P. aeruginosa bacteria.

Downloads

Download data is not yet available.

Author Biographies

Asep Bayu Dani Nandiyanto, Department of Chemistry Education, Faculty of Mathematics and Natural Sciences Education, Universitas Pendidikan Indonesia

Kimia, Departemen Pendidikan Kimia, Fakultas Pendidikan Matematika dan Ilmu Pengetahuan Alam, Universitas Pendidikan Indonesia

Annisa Moza Nabila, Department of Chemistry Education, Faculty of Mathematics and Natural Sciences Education, Universitas Pendidikan Indonesia

Kimia, Departemen Pendidikan Kimia, Fakultas Pendidikan Matematika dan Ilmu Pengetahuan Alam, Universitas Pendidikan Indonesia

Faradhina Salfa Nindya, Department of Chemistry Education, Faculty of Mathematics and Natural Sciences Education, Universitas Pendidikan Indonesia

Kimia, Departemen Pendidikan Kimia, Fakultas Pendidikan Matematika dan Ilmu Pengetahuan Alam, Universitas Pendidikan Indonesia

Nur'aini Berliana, Department of Chemistry Education, Faculty of Mathematics and Natural Sciences Education, Universitas Pendidikan Indonesia

Kimia, Departemen Pendidikan Kimia, Fakultas Pendidikan Matematika dan Ilmu Pengetahuan Alam, Universitas Pendidikan Indonesia

Nur Shafa Oktaviani, Department of Chemistry Education, Faculty of Mathematics and Natural Sciences Education, Universitas Pendidikan Indonesia

Kimia, Departemen Pendidikan Kimia, Fakultas Pendidikan Matematika dan Ilmu Pengetahuan Alam, Universitas Pendidikan Indonesia

Selmi Fiqhi Khoiriah, Department of Chemistry Education, Faculty of Mathematics and Natural Sciences Education, Universitas Pendidikan Indonesia

Kimia, Departemen Pendidikan Kimia, Fakultas Pendidikan Matematika dan Ilmu Pengetahuan Alam, Universitas Pendidikan Indonesia

References

Al-Ansari, M., Alkubaisi, N., Gopinath, K., Karthika, V., Arumugam, A., & Govindarajan, M. (2019). Facile and Cost-Effective Ag Nanoparticles Fabricated by Lilium lancifolium Leaf Extract: Antibacterial and Antibiofilm Potential. Journal of Cluster Science, 30(4), 1081–1089. https://doi.org/10.1007/s10876-019-01569-w

Aryan, Ruby, & Mehata, M. S. (2021). Green synthesis of silver nanoparticles using Kalanchoe pinnata leaves (life plant) and their antibacterial and photocatalytic activities. Chemical Physics Letters, 778(April), 138760. https://doi.org/10.1016/j.cplett.2021.138760

Behravan, M., Hossein Panahi, A., Naghizadeh, A., Ziaee, M., Mahdavi, R., & Mirzapour, A. (2019). Facile green synthesis of silver nanoparticles using Berberis vulgaris leaf and root aqueous extract and its antibacterial activity. International Journal of Biological Macromolecules, 124, 148–154. https://doi.org/10.1016/j.ijbiomac.2018.11.101

Boonupara, T., & Kajitvichyanukul, P. (2020). Facile synthesis of plasmonic Ag/AgCl nanoparticles with aqueous garlic extract (Allium Sativum L.) for visible-light triggered antibacterial activity. Materials Letters, 277, 128362. https://doi.org/10.1016/j.matlet.2020.128362

Gavade, S. J. M., Nikam, G. H., Dhabbe, R. S., Sabale, S. R., Tamhankar, B. V., & Mulik, G. N. (2015). Green synthesis of silver nanoparticles by using carambola fruit extract and their antibacterial activity. Advances in Natural Sciences: Nanoscience and Nanotechnology, 6(4). https://doi.org/10.1088/2043-6262/6/4/045015

Hameed, S., Khalil, A. T., Ali, M., Numan, M., Khamlich, S., Shinwari, Z. K., & Maaza, M. (2019). Greener synthesis of ZnO and Ag-ZnO nanoparticles using Silybum marianum for diverse biomedical applications. Nanomedicine, 14(6), 655–673. https://doi.org/10.2217/nnm-2018-0279

Kato, M., Athumi, Y., Yamaguchi, M., Date, H., Yamamoto, E., Murayama, S., & Karasawa, K. (2020). Trimethylammonium modification of a polymer-coated monolith column for rapid and simultaneous analysis of nanomedicines. Journal of Chromatography A, 1617, 460826. https://doi.org/10.1016/j.chroma.2019.460826

Kirubaharan, C. J., Fang, Z., Sha, C., & Yong, Y. C. (2020). Green synthesis of Ag and Pd nanoparticles for water pollutants treatment. Water Science and Technology, 82(11), 2344–2352. https://doi.org/10.2166/wst.2020.498

Rajivgandhi, G. N., Maruthupandy, M., Li, J. L., Dong, L., Alharbi, N. S., Kadaikunnan, S., ... & Li, W. J. (2020). Photocatalytic reduction and anti-bacterial activity of biosynthesized silver nanoparticles against multi drug resistant Staphylococcus saprophyticus BDUMS 5 (MN310601). Materials Science and Engineering: C, 114, 111024. https://doi.org/10.1016/j.msec.2020.111024

Rather, M. Y., Shincy, M., & Sundarapandian, S. (2020). Silver nanoparticles synthesis using Wedelia urticifolia (Blume) DC. flower extract: Characterization and antibacterial activity evaluation. Microscopy research and technique, 83(9), 1085-1094. https://doi.org/10.1002/jemt.23499

Sarli, S., Kalani, M. R., & Moradi, A. (2020). A potent and safer anticancer and antibacterial taxus-based green synthesized silver nanoparticle. International Journal of Nanomedicine, 15, 3791–3801. https://doi.org/10.2147/IJN.S251174

Umoren, S. A., Nzila, A. M., Sankaran, S., Solomon, M. M., & Umoren, P. S. (2017). Green synthesis, characterization and antibacterial activities of silver nanoparticles from strawberry fruit extract. Polish Journal of Chemical Technology, 19(4). https://doi.org/10.1515/pjct-2017-0079

Downloads

Published

2022-12-25