Chitosan-Activated Charcoal of Modified Corn Cobs as an Antibiotics Adsorbent
DOI:
https://doi.org/10.21580/wjc.v5i2.13164Keywords:
Pollution, waste, tetracycline, adsorption mechanism, adsorption capacityAbstract
Excessive use of tetracycline hydrochloride can cause water pollution. The concentration of tetracycline hydrochloride in an aqueous solution can be reduced by an adsorption method that utilizes activated charcoal as an adsorbent. This study aims to determine the effect of the addition of chitosan on the characteristics of activated charcoal, the effect of pH, adsorption kinetics, the adsorption isotherm, and the effect of sonication on adsorption ability. The method used in this research is the batch method combined with the sonication method. Based on this research, it is known that the use of ultrasonic waves (sonication) can streamline the adsorption process of tetracycline hydrochloride. The time required for the adsorption process is faster with greater adsorption capacity and efficiency. Tetracycline solution can be absorbed optimally at an acidic pH, which is pH 4. The adsorption process using the sonication method can increase the adsorption capacity from 2.092 mg.g-1 to 5.330 mg.g-1. The adsorption mechanism in both methods (batch and sonication) that occurs follows the kinetic equation of the two Ho pessaries. In contrast to adsorption kinetics, the adsorption isotherm for the batch method corresponds to the Langmuir adsorption isotherm equation (R2 = 0.950), while the use of the sonication method corresponds to the Freundlich isotherm equation (R2 = 0.859). Thus, corn cob waste can be utilized by converting it into activated charcoal modified by chitosan as an adsorbent for antibiotic waste, especially tetracycline hydrochloride.
Downloads
References
Alfanaar, R., Yuniati, Y., & Rismiarti, Z. (2017). Studi kinetika dan isoterm adsorpsi Besi(III) pada zeolit alam dengan bantuan gelombang sonikasi. EduChemia (Jurnal Kimia Dan Pendidikan), 2(1), 63. https://doi.org/10.30870/educhemia.v2i1.1297
Ariyani, D., Cahaya, N., & Mujiyanti, D. R. (2018). Pengaruh pH dan waktu kontak terhadap adsorpsi logam Zn(II) pada komposit arang eceng gondok termodifikasi kitosan-epiklorohidrin. Jurnal Kimia VALENSI, 4(2), 85–92. https://doi.org/10.15408/jkv.v4i2.6521
Badan Standarisasi Nasional. (1995). Arang Aktif Teknis (SNI 06-3730-95).
Dang, B. T., Gotore, O., Ramaraj, R., Unpaprom, Y., Whangchai, N., Bui, X. T., Maseda, H., & Itayama, T. (2021). Sustainability and application of corncob-derived biochar for removal of fluoroquinolones. Biomass Conversion and Biorefinery, 12(3), 913–923. https://doi.org/10.1007/s13399-020-01222-x
Enaime, G., Baçaoui, A., Yaacoubi, A., & Lübken, M. (2020). Biochar for wastewater treatment-conversion technologies and applications. Applied Sciences (Switzerland), 10(3492), 1–29. https://doi.org/10.3390/app10103492
Erawati, E., & Fernando, A. (2018). Pengaruh jenis aktivator dan ukuran karbon aktif terhadap pembuatan adsorbent dari serbik gergaji kayu sengon (Paraserianthes falcataria). Jurnal Integrasi Proses, 7(2), 58–66. https://doi.org/10.36055/jip.v7i2.3808
Fernanda, M. A. H. F., & Chrisnandari, R. D. (2021). Kajian residu tetrasiklin HCl dalam daging dan hati ayam broiler pada beberapa peternakan di kabupaten Lamongan menggunakan metode spektrofotometri ultraviolet. Journal of Pharmacy and Science, 6(1), 47–52. https://doi.org/10.53342/pharmasci.v6i1.206
Firdus, F., Samadi, S., Muhammadar, A. A., Sarong, M. A., Muchlisin, Z. A., Sari, W., Mellisa, S., Satria, S., Boihaqi, B., & Batubara, A. S. (2021). Supplementation of rice husk activated charcoal in feed and its effects on growth and histology of the stomach and intestines from giant trevally, Caranx ignobilis [version 1; peer review: 1 approved with reservations]. F1000Research, 9(May), 1–13. https://doi.org/10.12688/F1000RESEARCH.27036.1
Gebrewold, B. D., Kijjanapanich, P., Rene, E. R., Lens, P. N. L., & Annachhatre, A. P. (2019). Fluoride removal from groundwater using chemically modified rice husk and corn cob activated carbon. Environmental Technology (United Kingdom), 40(22), 2913–2927. https://doi.org/10.1080/09593330.2018.1459871
Getachew, T., Hussen, A., & Rao, V. M. (2015). Defluoridation of water by activated carbon prepared from banana (Musa paradisiaca) peel and coffee (Coffea arabica) husk. International Journal of Environmental Science and Technology, 12(6), 1857–1866. https://doi.org/10.1007/s13762-014-0545-8
Jubilate, F., Zaharah, T. A., & Syahbanu, I. (2016). Pengaruh aktivasi arang dari limbah kulit pisang kepok sebagai adsorben Besi (II) pada air tanah. Jurnal Kimia Khatulistiwa, 5(4), 14–21. http://jurnal.untan.ac.id/index.php/jkkmipa/article/view/16743/14397
Li, Y., Shang, H., Cao, Y., Yang, C., Feng, Y., & Yu, Y. (2022). High performance removal of sulfamethoxazole using large specific area of biochar derived from corncob xylose residue. Biochar, 4(11), 1–11. https://doi.org/10.1007/s42773-021-00128-9
Liu, Yuxue, Lonappan, L., Brar, S. K., & Yang, S. (2018). Impact of biochar amendment in agricultural soils on the sorption, desorption, and degradation of pesticides: A review. Science of the Total Environment, 645, 60–70. https://doi.org/10.1016/j.scitotenv.2018.07.099
Liu, Yuyingnan, Xu, X., Qu, B., Liu, X., Yi, W., & Zhang, H. (2021). Study on adsorption properties of modified corn cob activated carbon for mercury ion. Energies, 14(15). https://doi.org/10.3390/en14154483
Liu, Z., Sun, Y., Xu, X., Meng, X., Qu, J., Wang, Z., Liu, C., & Qu, B. (2020). Preparation, characterization and application of activated carbon from corn cob by KOH activation for removal of Hg(II) from aqueous solution. Bioresource Technology, 306(Ii), 123154. https://doi.org/10.1016/j.biortech.2020.123154
Medhat, A., El-Maghrabi, H. H., Abdelghany, A., Abdel Menem, N. M., Raynaud, P., Moustafa, Y. M., Elsayed, M. A., & Nada, A. A. (2021). Efficiently activated carbons from corn cob for methylene blue adsorption. Applied Surface Science Advances, 3(November 2020), 100037. https://doi.org/10.1016/j.apsadv.2020.100037
Nurbaeti, L., Prasetya, A. T., & Kusumastuti, E. (2018). Arang ampas tebu (Bagasse) teraktivasi asam kKlorida sebagai penurun kadar ion H2PO4-. Indonesian Journal of Chemical Science, 7(2), 132–139.
Patel, H. (2020). Batch and continuous fixed bed adsorption of heavy metals removal using activated charcoal from neem (Azadirachta indica) leaf powder. Scientific Reports, 10(1), 1–12. https://doi.org/10.1038/s41598-020-72583-6
Rahman, A., Aziz, R., Indrawati, A., & Usman, M. (2020). Pemanfaatan beberapa jenis arang aktif sebagai bahan absorben logam berat cadmium (Cd) pada tanah sedimen drainase kota medan sebagai media tanam. Jurnal Agroteknologi Dan Ilmu Pertanian, 5(1), 42–54.
Razavian, M., Fatemi, S., & Masoudi-Nejad, M. (2014). A comparative study of CO2 and CH4 adsorption on silicalite-1 fabricated by sonication and conventional method. Adsorption Science and Technology, 32(1), 73–88. https://doi.org/10.1260/0263-6174.32.1.73
Rizkyi, I. P., Budi, E., & Susilaningsih, E. (2016). Aktivasi arang tongkol jagung menggunakan HCl sebagai adsorben ion Cd(II). Indonesian Journal of Chemical Science, 5(2), 125–129.
Saputro, S., Masykuri, M., Mahardiani, L., & Kurniastuti, D. (2018). The synthesis of corncobs (zea mays) active charcoal and water hyacinth (eichornia crassipes) adsorbent to adsorb Pb(II) with it’s analysis using solid-phase spectrophotometry (sps). IOP Conference Series: Materials Science and Engineering, 333(1), 1–6. https://doi.org/10.1088/1757-899X/333/1/012054
Sharififard, H., Ashtiani, F. Z., & Solaeimani, M. (2013). Adsorption of palladium and platinum from aqueous solutions by chitosan and avtivated carbon coated with chitosan. Asia-Pacific Journal of Chemical Engineering, 8(3), 384–395. https://doi.org/10.1002/apj
Shi, Y., Hu, H., & Ren, H. (2020). Dissolved organic matter (DOM) removal from biotreated coking wastewater by chitosan-modified biochar: Adsorption fractions and mechanisms. Bioresource Technology, 297, 122281. https://doi.org/10.1016/j.biortech.2019.122281
Sun, Z., Qu, K., Cheng, Y., You, Y., Huang, Z., Umar, A., Ibrahim, Y. S. A., Algadi, H., Castañeda, L., Colorado, H. A., & Guo, Z. (2021). Corncob-derived activated carbon for efficiently adsorption dye in sewage. ES Food & Agroforestry, 61–73. https://doi.org/10.30919/esfaf473
Verayana, Paputungan, M., & Iyabu, H. (2018). Pengaruh aktivator HCl dan H3PO4 terhadap karakteristik (morfologi pori) arang aktif tempurung kelapa serta uji adsorpsi pada logam timbal (Pb). Jurnal Entropi, 13(1), 67–75.
Wardani, G. A., Qudsi, E. M., Pratita, A. T. K., Idacahyati, K., & Nofiyanti, E. (2021). Utilization of activated charcoal from sawdust as an antibiotic adsorbent of tetracycline hydrochloride. Science and Technology Indonesia, 6(3), 181–188. https://doi.org/10.26554/sti.2021.6.3.181-188
Wildan, A., & Mutiara, E. V. (2016). Pengolahan limbah organik dan anorganik menggunakan fotokatalitik TiO2 Dopan-N. Inovasi Teknik Kimia, 1(1), 09–16.
Downloads
Published
Issue
Section
License
The copyright of the received article shall be assigned to the publisher of the journal. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to published articles. Therefore, the author must submit a statement of the Copyright Transfer Agreement.*)
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
In line with the license, authors and any users (readers and other researchers) are allowed to share and adapt the material. In addition, the material must be given appropriate credit, provided with a link to the license, and indicated if changes were made. If authors remix, transform or build upon the material, authors must distribute their contributions under the same license as the original.
*) Authors whose articles are accepted for publication will receive confirmation via email to send a Copyright Transfer Agreement.