Characteristics of Liquid Sugar from Cassava Flour Using Gelatinization, Liquefaction and Enzymatic Saccharification (amyloglucosidase and α-amylase) Processes

Authors

  • Tika Agustina Departement Industrial Chemical Engineering Technology, Politeknik Negeri Lampung, Indonesia, Indonesia
  • Vida Elsyana Departement Industrial Chemical Engineering Technology, Politeknik Negeri Lampung, Indonesia, Indonesia
  • Livia Rhea Alvita Departement Industrial Chemical Engineering Technology, Politeknik Negeri Lampung, Indonesia, Indonesia
  • Adityas Agung Ramandani Departement Chemical Engineering and Materials Science, Yuan Ze University, Taiwan, Taiwan, Province of China
  • Mawar Siti Purnani Departement Industrial Chemical Engineering Technology, Politeknik Negeri Lampung, Indonesia, Indonesia

DOI:

https://doi.org/10.21580/wjc.v7i1.20458

Abstract

Domestic sugar production is still insufficient to satisfy the national demand for sugar, and production costs are expensive. One of the ingredients that can be used to make liquid sugar is starch. This study aims to determine the response of the resulting reduced sugar by optimizing the substrate concentration, liquefaction, and saccharification time. The method used of Box Behnken Design (BBD) with combinations of 20, 30, and 40% substrate concentrations, liquefaction times of 20, 40, and 60 min, and saccharification times of 20, 40, and 60 min. The characteristics of cassava flour, such as moisture (9.208 ± 0.068%), ash (0.987 ± 0.001%), fiber (2.187 ± 0.033%), and starch (79.876 ± 0.000%), were satisfied on SNI 01-2905-1992. Liquid sugar made from cassava flour reduced the sugar content by 28.299 ± 0.101%. The optimal conditions were 40% substrate concentration, 60 min liquefaction time, and 60 min saccharification time. The characteristics of the validation liquid sugar are in accordance with the specifications for the quality requirements of SNI 01-2978-1992 in the form of moisture content, ash content, and reducing sugar of 5.194 ± 0.003%, 0.996 ± 0.000%, and 29.668 ± 0.761%, respectively. These results highlight the effectiveness of optimizing substrate concentration, liquefaction time, and saccharification time in producing high-quality liquid sugar from cassava flour. This optimization addresses the domestic demand for sugar. It provides a cost-effective solution by utilizing cassava flour, thereby supporting the local agricultural economy and potentially reducing reliance on imported sugar.

Downloads

Download data is not yet available.

Author Biographies

Tika Agustina, Departement Industrial Chemical Engineering Technology, Politeknik Negeri Lampung, Indonesia

Departement Industrial Chemical Engineering Technology, Politeknik Negeri Lampung, Indonesia

Vida Elsyana, Departement Industrial Chemical Engineering Technology, Politeknik Negeri Lampung, Indonesia

Departement Industrial Chemical Engineering Technology, Politeknik Negeri Lampung, Indonesia

Livia Rhea Alvita, Departement Industrial Chemical Engineering Technology, Politeknik Negeri Lampung, Indonesia

Departement Industrial Chemical Engineering Technology, Politeknik Negeri Lampung, Indonesia

Adityas Agung Ramandani, Departement Chemical Engineering and Materials Science, Yuan Ze University, Taiwan

Departement Chemical Engineering and Materials Science, Yuan Ze University, Taiwan

Mawar Siti Purnani, Departement Industrial Chemical Engineering Technology, Politeknik Negeri Lampung, Indonesia

Departement Industrial Chemical Engineering Technology, Politeknik Negeri Lampung, Indonesia

References

Abdrabuo, M. M., Hefnawy, T., Al-Khatib, A., & El-Maghraby, L. M. (2024). Comparison of Some Commercial Enzymes Used In the Production of High-Maltose Syrup From Corn Starch. Egyptian Journal of Chemistry, 67(3), 483-494.

Abiodun, L. O., Oyelade, O. A., Ademiluyi, Y. S., Ogunjirin, O. A., & Oyedokun, J. A. (2023). Overcoming the problems facing cassava processing industry in Nigeria. Financial Statistical Journal, 6(1).

Amândio, M. S., Rocha, J. M., & Xavier, A. M. (2023). Enzymatic hydrolysis strategies for cellulosic sugars production to obtain bioethanol from Eucalyptus globulus bark. Fermentation, 9(3), 241.

Ayu Ratna P, & Yulistiani, F. (2015). PEMBUATAN GULA CAIR DARI PATI SINGKONG DENGAN MENGGUNAKAN HIDROLISIS ENZIMATIS. Jurnal Fluida, 11(2), 9-14. https://doi.org/https://doi.org/10.35313/fluida.v11i2.81

Balakrishnan, D., Kumar, S. S., & Sugathan, S. (2019). Amylases for food applications—Updated information. Green Bio-processes: Enzymes in Industrial Food Processing, 199-227.

Bertoft, E. (2018). Analyzing starch molecular structure. In Starch in food (pp. 97-149). Elsevier.

Cereda, M. P. (2024). Starch hydrolysis: physical, acid, and enzymatic processes. In Starch Industries: Processes and Innovative Products in Food and Non-Food Uses (pp. 75-113). Elsevier.

Egbune, E. O., Ezedom, T., Orororo, O. C., Egbune, O. U., Avwioroko, O. J., Aganbi, E., Anigboro, A. A., & Tonukari, N. J. (2023). Solid-state fermentation of cassava (Manihot esculenta Crantz): a review. World Journal of Microbiology and Biotechnology, 39(10), 259.

Folake O, S., Bolanle O, O., & Titilope, A. (2012). Nutrient and anti-nutrient content of soy-enriched tapioca. Food and Nutrition Sciences, 2012.

Hartiati, A., & Yoga, I. G. S. (2015). Pemanfaatan Umbi Minor Gadung sebagai Bahan Baku Produksi Gula Cair Menggunakan Proses Likuifikasi dan Sakarifikasi Secara Enzimatis. Prosiding Semunar Agroindustri dan Lokakarya Nasional FKPT-TPI Program Studi TIP-UTM.

Hartwell, S. K. (2023). 1 Chapter Uses of Flow-based Systems. Some Key Topics in Chemistry and Biochemistry for Biotechnologists, 1.

Herlambang, M. J., Ramandani, A. A., Cendekia, D., Alvita, L. R., Wulandari, Y. R., Shintawati, S., Purnani, M. S., & Efendi, D. A. M. N. (2023). Optimization and Characterization of Adsorbent from Palm Kernel Shell Waste Using H3PO4 Activator. CHEESA: Chemical Engineering Research Articles, 6(2).

Howeler, R. (2009). Cassava in Asia: Present situation and its future potential. The use of Cassava Roots and Leaves for On-farm Animal Feeding. Ed. by CIAT and Hue University, Bangkok, Thailand, 7.

Hua, X., & Yang, R. (2016). Enzymes in starch processing. Enzymes in food and beverage processing, 139-170.

Kabak, B., Dobson, A. D., & Var, I. l. (2006). Strategies to prevent mycotoxin contamination of food and animal feed: a review. Critical reviews in food science and nutrition, 46(8), 593-619.

Kusmayadi, A., Leong, Y. K., Yen, H.-W., Huang, C.-Y., & Chang, J.-S. (2021, 2021/05/01/). Microalgae as sustainable food and feed sources for animals and humans – Biotechnological and environmental aspects. Chemosphere, 271, 129800. https://doi.org/https://doi.org/10.1016/j.chemosphere.2021.129800

Kusmiyati, K., Hadiyanto, H., & Fudholi, A. (2023). Treatment updates of microalgae biomass for bioethanol production: A comparative study. Journal of Cleaner Production, 383, 135236.

Laresha, M. H. A., Cendekia, D., Ermaya, D., Shintawati, S., & Ramandani, A. A. (2024). Adhesive formulation and particle size in making bio-briquettes from bamboo pyrolysis waste charcoal. Jurnal Litbang Industri, 14(1), 35-42. https://doi.org/10.24960/jli.v14i1.8522.35-42

Li, Z., Kong, H., Li, Z., Gu, Z., Ban, X., Hong, Y., Cheng, L., & Li, C. (2023). Designing liquefaction and saccharification processes of highly concentrated starch slurry: Challenges and recent advances. Comprehensive Reviews in Food Science and Food Safety.

Muhammad, D. R. A., Zaman, M. Z., & Ariyantoro, A. R. (2023). Sustainable materials and infrastructures for the food industry. In Sustainable Development and Pathways for Food Ecosystems (pp. 147-182). Elsevier.

Olosunde, A. W., Kelechi, S. O., & Antia, O. O. (2023). Investigation into Optimal Conditions for Enzymatic Hydrolysis of Cassava Starch to Glucose by Amylase from Rice. American Journal of Smart Technology and Solutions, 2(2), 1-9.

Rasulu, H. (2014, 01/01). Quality Improvement of Cassava Flour of Local Variety of Ternate Through Fermentation Method (Application on Traditional Food of North Maluku “Sagu lempeng”). International Journal on Advanced Science, Engineering and Information Technology, 4, 423. https://doi.org/10.18517/ijaseit.4.6.449

Smole, M. S., Hribernik, S., Kurečič, M., Krajnc, A. U., Kreže, T., & Kleinschek, K. S. (2019). Surface properties of non-conventional cellulose fibres. Springer.

Suharko, S., & Hudayana, B. (2020). Rural woman and food security: Diversification of cassava-based foods in Gunungkidul District, Yogyakarta. Sodality: Jurnal Sosiologi Pedesaan, 8(2), 1-14.

Suripto, S., Maarif, M. S., & Arkeman, Y. (2013). Pengembangan gula cair berbahan baku ubi kayu sebagai alternatif gula kristal dengan pendekatan sistem inovasi. Jurnal Teknik Industri, 3(2).

Wagner, N., Bosshart, A., Wahler, S., Failmezger, J., Panke, S., & Bechtold, M. (2015). Model-based cost optimization of a reaction–separation integrated process for the enzymatic production of the rare sugar d-psicose at elevated temperatures. Chemical Engineering Science, 137, 423-435.

Wahyuni, S., Sarinah, Purnamasari, W. O. G., Pato, U., Susilowati, P. E., Asnani, & Khaeruni, A. (2022). Identification and Genetic Diversity of Amylase Producing Lactic Acid Bacteria from Brown Rice (Oryza nivara) Wakawondu Cultivar Based on 16S rRNA Gene. Fermentation, 8(12), 691.

Wang, C., Shen, Z., Cui, X., Jiang, Y., & Jiang, X. (2020). Response surface optimization of enzyme-assisted extraction of R-phycoerythrin from dry Pyropia yezoensis. Journal of Applied Phycology, 32, 1429-1440.

Widiarto, S., Pramono, E., Suharso, Rochliadi, A., & Arcana, I. M. (2019). Cellulose nanofibers preparation from cassava peels via mechanical disruption. Fibers, 7(5), 44.

Xiao, Y., Shen, M., Luo, Y., Ren, Y., Han, X., & Xie, J. (2020). Effect of Mesona chinensis polysaccharide on the pasting, rheological, and structural properties of tapioca starch varying in gelatinization temperatures. International Journal of Biological Macromolecules, 156, 137-143.

Zhang, H., Han, L., & Dong, H. (2021). An insight to pretreatment, enzyme adsorption and enzymatic hydrolysis of lignocellulosic biomass: Experimental and modeling studies. Renewable and Sustainable Energy Reviews, 140, 110758.

Downloads

Published

2024-07-31