Study of Synthesis of Ethyl-2-(4-Allyl-2-Methoxyphenoxy)Acetate in Polar Aprotic Solvents

Authors

  • Arif Fadlan Department of Chemistry, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
  • Heni Masitoh Department of Chemistry, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
  • Bella Ratih Apsari Niadisti Department of Chemistry, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
  • Intan Ali Khusnayaini Department of Chemistry, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
  • Lela Agustin Department of Chemistry, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
  • Jean Fitriani Roshuna Department of Chemistry, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia

DOI:

https://doi.org/10.21580/wjc.v7i2.23970

Keywords:

eugenol, alkylation, aprotic solvents

Abstract

Eugenol, a phenol-derived aromatic allylbenzene compound, exhibits a wide spectrum of biological activities (antifungal, antibacterial, antioxidant, analgesic, and antiseptic) and is an active ingredient in various hygiene products. It contains three reactive groups (hydroxy, allyl, and methoxy) and undergoes several reactions, including alkylation. The modification of the hydroxyl group of eugenol through alkylation has been performed using different alkylating agents. Alkylation has been carried out in various solvents (benzene, acetonitrile, methanol, and water) and at diverse temperatures. Hence, the investigation of this alkylation reaction on eugenol remains challenging. Correspondingly, the present study investigated the alkylation of eugenol by ethyl chloroacetate in polar aprotic solvents (N,N-dimethylformamide, dimethyl sulfoxide, acetonitrile, and tetrahydrofuran) at temperatures ranging from 0°C to room temperature. The product, ethyl 2-(4-allyl-2-methoxyphenoxy)acetate (3), was obtained in yields of 91%, 51%, and 47% using DMF, DMSO, and CH3CN, respectively. The product's structure was confirmed by NMR, IR spectroscopy, and HRESIMS analysis.

Downloads

Download data is not yet available.

References

Asnawati, D., Sudarma, I. M., Yuanita, E., Arlina, B. F., Hamdiani, S. & Kamali, S. R. (2015). Methylation of Eugenolusing Dimethyl Carbonate and Bentonite as Catalyst. Indonesian Journal of Chemistry, 15, 256- 262.

Bendre, R.S., Rajput, J. D., Bagul, S. D. & Karandikar, P. S. (2016). Outlooks on Medicinal Properties of Eugenol and its Synthetic Derivatives. Natural Products Chemical Research, 4, doi:10.4172/2329-6836.1000212

Fernandes, M. J. G., Pereira, R. B., Pereira, D. M., Fortes, A. G., Castanheira, E. M. S. & Gonçalves, M. S. T. (2020). NewEugenol Derivatives with Enhanced Insecticidal Activity. International Journal of Molecular Sciences, 21, 9257.

Firdaus, M., Kusumaningsih, T., Wibowo, A. H. & Hertiningtyas, C. (2020). Green Synthesis of Renewable Dimethyl Terephthalate-like Monomer from Eugenol. Sains Malaysiana, 49, 2715–2720. https://doi.org/10.17576/jsm-2020-4911-10

Frohlich, P. C., Santos, K. A., Palu, F., Cardozo-Filho, L., Silva, C. & Silva, E. A. (2019). Evaluation of The Effects of Temperature and Pressure on The Extraction of Eugenol from Clove (Syzygium aromaticum) Leaves Using Supercritical CO2. The Journal of Supercritical Fluids, 143, 313-320. doi: 10.1016/J.SUPFLU.2018.09.009

Khalil, A. A., Rahman, U. U., Khan, M. R., Sahar, A., Mehmood, T. & Khan, M. (2017). Essential Oil Eugenol: Sources, Extraction Techniques and Nutraceutical Perspectives. RSC Advances, 7, 3669-33681. doi:10.1039/c7ra04803c

Marchese, A., Barbieri, R., Coppo, E., Orhan, I. E., Daglia, M., Nabavi, S. F., Izadi, M., Abdollahi, M., Nabavi, S. M. & Ajami, M. (2017). Antimicrobial Activity of Eugenol and Essential Oils Containing Eugenol: A Mechanistic Viewpoint. Critical Review in Microbiology, 2017. doi: 10.1080/1040841X.2017.1295225

Mekky, A. E., Emam, A. E., Selim, M. N., Abdelmouty, E. S. & Khedr, M. (2023). Antibacterial and Antineoplastic MCF-7 and HePG-2 Characteristics of The Methanolic (80%) Clove (Syzygium aromaticum L.) Extract. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-023-03862-1

Mikhailovskii, A. G., Surikova, O. V., Limanskii, E. S. & Vakhrin, M. I. (2012). Synthesis of Isoquinoline Alkaloid Derivatives from Eugenol. Chemistry of Natural Compounds, 48, 285-287.

Mishra, S., Sachan, A. & Sachan, S. G. (2013). Production of Natural Value-added Compounds: An Insight into The Eugenol Biotransformation Pathway. Journal of The Indian Microbiology Biotechnology, 40, 545–550. doi:10.1007/s10295-013-155-9

Muliadi, Setiawan, T., Setiani, I. D., Limatahu, N. A. & Liestianty, D. (2023). Computational Chemistry: QSAR of Dental Disease-Causing Streptococcus mutans Using Eugenol Derivative Compounds from Clove Essential Oil. Techno, 12, 39–45. doi: https://doi.org/10.33387/tjp.v12i1.5793

Olea, A. F., Bravo, A., Martínez, R., Thomas, M., Sedan, C., Espinoza, L., Zambrano, E., Carvajal, D., Silva-Moreno, E. & Carrasco, H. (2019). Antifungal Activity of Eugenol Derivatives Against Botrytis cinerea. Molecules, 24. https://doi.org/10.3390/molecules24071239

Oliveira, A. S. D., Gazolla, P. A. R., Oliveira, A. F. C. D. S., Pereira, W. L., Maia, A. F. D. S., Santos, A. G., Silva, I. E. P. D., Mendes, T. A. D. O., Silva, A. M. D., Dias, R. S., Silva, C. C. D., Polêto, M. D., Teixeira, R. R. & Paula, S. O D. (2019). Discovery of Novel West Nile Virus Protease Inhibitor Based on Isobenzonafuranone and Triazolic Derivatives of Eugenol and Indan-1,3-Dione Scaffolds. PLoS ONE, 14, e0223017

Pinto, S. M. L., Rivera, Y., Sandoval, L. V. H., Lizarazo, J. C., Rincón, J. J. & Méndez, L. Y. V. (2019). Semisynthetic Eugenol Derivatives as Antifungal Agents Against Dermatophytes of The Genus Trichophyton. Journal of Medical Microbiology, 68, 1109–1117. doi:10.1099/jmm.0.001019

Solomons, T. W. G., Fryhle, C. B. & Snyder, S. A. (2014). Organic Chemistry 11th Edition. John Wiley dan Sons, Inc.

Suryanti, V., Wibowo, F. R., Kusumaningsih, T., Wibowo, A. H., Khumaidah, S. A. & Wijayanti, I. A. (2016). Amidation Reaction of Eugenyl Oxyacetate Ethyl Ester with 1, Diaminopropane. AIP Conference Proceedings, 1725, 020085. doi:10.1063/1.4945539

Suryanto, E. & Anwar, C. (2012). Sintesis Antioksidan 4,6-Dialil-2-Metoksifenol dari Alil Eugenol Melalui Penataan Ulang Claisen. Chemistry Progress, 1, 1–8.

Ulanowska, M. & Olas, B. (2021). Biological Properties and Prospects for The Application of Eugenol-a review. International Journal of Molecular Sciences, 22, 3671. https://doi.org/10.3390/ijms22073671

Wael, S., Mahulette, F., Watuguly, T. W. & Wahyudi, D. (2018). Effect of Leaf Syzygium aromaticum on Lymphocytes and Macrophages Mice Balb/c. Traditional Medicine Journal, 23, 79–83.

Yulianti, R., Onggo, H. & Syampurwadi, A. (2012). Effect of Dielectric Constant And Dispersion of Particle on Hydrophobicity of Carbon Nanotube Based Electrocatalyst Film. Indonesian Journal of Materials Science, 14, 224-28.

Published

2024-12-31