COLLECTIVE INSIGHTS ON THE POLYMORPHS, BIOAVAILABILITY, AND BINDING PROPERTIES OF ATOVAQUONE (ANTIMALARIAL DRUG): AN OVERVIEW
DOI:
https://doi.org/10.21580/wjc.v8i1.25875Keywords:
Atovaquone, Bioavailability, Crystal packing, Cytochrome bc1, Isomers, Polymorphs, SolubilityAbstract
This review initiative had interrelated key aspects like crystal structure, bioavailability, and stereospecific binding capabilities of Atovaquone. Surprisingly, very little literature was available regarding the exploration of different polymorphs of Atovaquone. Interestingly, extensive literature was found towards the bioavailability features and factors specifically related with Atovaquone. Several researchers had attempted to correlate crystal morphology and orientation with the binding properties of Atovaquone and its structurally related compounds. The polymorphic stability of the molecule will play a crucial role in drug formulation and contributes towards the bioavailability of the drug through variations in solubility. Hence for Atovaquone, two factors must be considered: its polymorphic nature and the presence of stereospecific isomers to explain its bioavailability and binding properties. The trans-isomer of Atovaquone, having a specific polymorphic form had provided higher bioavailability, more efficient binding, and an expectedly higher inhibitory activity.
Downloads
References
Ashton, T. M., Fokas, E., Kunz-Schughart, L. A., Folkes, L. K., Anbalagan, S., Huether, M., Kelly, C. J., Pirovano, G., Buffa, F. M., Hammond, E. M., Stratford, M., Muschel, R. J., Higgins, G. S., & McKenna, W. G. (2016). The anti-malarial atovaquone increases radiosensitivity by alleviating tumour hypoxia. Nature Communications, 7(1). https://doi.org/10.1038/ncomms12308
Baggish, A. L., & Hill, D. R. (2002). Antiparasitic agent atovaquone. Antimicrobial Agents and Chemotherapy, 46(5), 1163–1173. https://doi.org/10.1128/aac.46.5.1163-1173.2002
Bandi, P. R., Kura, R. R., Rapolu, R. R., Dasari, M. R., Valivarthi, V. P. (2010). Novel crystalline form of Atovaquone. E. P. Application, EP2216315 A1.
Barton, V., Fisher, N., Biagini, G. A., Ward, S. A., & O’Neill, P. M. (2010). Inhibiting Plasmodium cytochrome bc1: a complex issue. Current Opinion in Chemical Biology, 14(4), 440–446. https://doi.org/10.1016/j.cbpa.2010.05.005
Basumallick, S., & Row, T. N. G. (2015). Binding Study of Cis-Atovaquone with Cytochrome bc1 of Yeast. Computational Molecular Bioscience, 05(04), 57–63. https://doi.org/10.4236/cmb.2015.54007
Birth, D., Kao, W.-C., & Hunte, C. (2014). Structural analysis of atovaquone-inhibited cytochrome bc1 complex reveals the molecular basis of antimalarial drug action. Nature Communications, 5(1). https://doi.org/10.1038/ncomms5029
Borhade, V., Pathak, S., Sharma, S., & Patravale, V. (2014). Formulation and characterization of atovaquone nanosuspension for improved oral delivery in the treatment of malaria. Nanomedicine (London, England), 9(5), 649–666. https://doi.org/10.2217/nnm.13.61
Brog, J.-P., Chanez, C.-L., Crochet, A., & Fromm, K. M. (2013). Polymorphism, what it is and how to identify it: a systematic review. RSC Advances, 3(38), 16905. https://doi.org/10.1039/c3ra41559g
Caira, M. R. (1998). Crystalline polymorphism of organic compounds. In Topics in Current Chemistry (pp. 163–208). Springer Berlin Heidelberg.
Calvo, J., Lavandera, J. L., Agüeros, M., & Irache, J. M. (2011). Cyclodextrin/poly(anhydride) nanoparticles as drug carriers for the oral delivery of atovaquone. Biomedical Microdevices, 13(6), 1015–1025. https://doi.org/10.1007/s10544-011-9571-1
Cauchetier, E., Fessi, H., Boulard, Y., Deniau, M., Astier, A., & Paul, M. (1999). Preparation and physicochemical characterization of atovaquone‐containing liposomes. Drug Development Research, 47(4), 155–161.
Ceolin, R., & Rietveld, I. B. (2010). Phenomenology of polymorphism and topological pressure–temperature diagrams: Description of the phase relationship involving Atovaquone polymorphs I and III. Journal of Thermal Analysis and Calorimetry, 102(1), 357–360. https://doi.org/10.1007/s10973-010-0856-z
Chavan, R. B., & Shastri, N. R. (2018). Polymorphic transformation as a result of atovaquone incompatibility with selected excipients. Journal of Thermal Analysis and Calorimetry, 131, 2129-2139.
Cheng, G., Hardy, M., Topchyan, P., Zander, R., Volberding, P., Cui, W., & Kalyanaraman, B. (2020). Potent inhibition of tumour cell proliferation and immunoregulatory function by mitochondria-targeted atovaquone. Scientific Reports, 10(1), 17872. https://doi.org/10.1038/s41598-020-74808-0
Daniel, L., Karam, A., Franco, C. H. J., Conde, C., Sacramento de Morais, A., Mosnier, J., Fonta, I., Villarreal, W., Pradines, B., Moreira, D. R. M., & Navarro, M. (2024). Metal(triphenylphosphine)-atovaquone complexes: Synthesis, antimalarial activity, and suppression of heme detoxification. Inorganic Chemistry, 63(37), 17087–17099. https://doi.org/10.1021/acs.inorgchem.4c02751
Dearn, A. R. (2000). Atovaquone pharmaceutical compositions. U. S. Patent, 6018080 A.
Dearn, A. R. (2003). Atovaquone pharmaceutical compositions. U. S. Patent, 6649659 B1.
Dressman, J. B., & Reppas, C. (2000). In vitro-in vivo correlations for lipophilic, poor ly water soluble drugs. European Journal of Pharmaceutical Sciences, 11, S73-80.
Fontaine, E., Ichas, F., & Bernardi, P. (1998). A ubiquinone-binding site regulates the mitochondrial permeability transition pore. The Journal of Biological Chemistry, 273(40), 25734-25740. https://doi.org/10.1074/jbc.273.40.25734
Fry, M., & Pudney, M. (1992). Site of action of the antimalarial hydroxynaphthoquinone, 2-[trans-4-(4’-chlorophenyl) cyclohexyl]-3- hydroxy-1,4-naphthoquinone (566C80). Biochemical Pharmacology, 43(7), 1545-1553. https://doi.org/10.1016/0006-2952(92)90213-3
Gavezzotti, A. (2007). A solid-state chemist’s view of the crystal polymorphism of organic compounds. Journal of Pharmaceutical Sciences, 96(9), 2232–2241. https://doi.org/10.1002/jps.20870
Gupta, N., & Srivastava, S. K. (2019). Atovaquone: An antiprotozoal drug suppresses primary and resistant breast tumor growth by inhibiting HER2/β-catenin signaling. Molecular Cancer Therapeutics, 18(10), 1708–1720. https://doi.org/10.1158/1535-7163.mct-18-1286
Haile, L., & Flaherty, J. (1993). Atovaquone: A Review. Annals of Pharmacotherapy, 27, 1488 - 1494. https://doi.org/10.1177/106002809302701215.
Hudson, A. T., & Randall, A. W. (1991). Naphthoquinone derivatives. U. S. Patent, 5053432 A.
Kate, L., Gokarna, V., Borhade, V., Prabhu, P., Deshpande, V., Pathak, S., Sharma, S., & Patravale, V. (2016). Bioavailability enhancement of atovaquone using hot melt extrusion technology. European journal of pharmaceutical sciences: official journal of the European Federation for Pharmaceutical Sciences, 86, 103-14 . https://doi.org/10.1016/j.ejps.2016.03.005.
Kathpalia, H., Das, S., & Shidhaye, S. (2021). Formulation and optimization of atovaquone micronized suspension by top-down method. Indian Journal of Pharmaceutical Education, 55(1), 77–85. https://doi.org/10.5530/ijper.55.1.11
Kathpalia, H., Juvekar, S., & Shidhaye, S. (2019). Design and in vitro evaluation of atovaquone nanosuspension prepared by pH based and anti-solvent based precipitation method. Colloids and Interface Science Communications, 29, 26–32. https://doi.org/10.1016/j.colcom.2019.01.002
Kersten, K., Kaur, R., & Matzger, A. (2018). Survey and analysis of crystal polymorphism in organic structures. IUCrJ, 5(Pt 2), 124–129. https://doi.org/10.1107/S2052252518000660
Kessl, J. J., Meshnick, S. R., & Trumpower, B. L. (2007). Modeling the molecular basis of atovaquone resistance in parasites and pathogenic fungi. Trends in Parasitology, 23(10), 494–501. https://doi.org/10.1016/j.pt.2007.08.004
Kumar, A., Dike, S. Y., Mathur, P., Byju, N. T., Sharma, B., Kore, S. S., Buchude, V. S., Singh, D. (2009). Novel polymorph of Atovaquone. U. S. Patent, 20090221715A1.
Kumar, A., Singh, D., Mathur, P., Nellithanath, T. B., Sahal, G., Bhasin, R. K., Samantaray, D. P. (2016). Pharmaceutical composition, U. S. Patent, 9492406 B2.
Latter, V. S., Gutteridge, W. E. (1991). Medicaments. U. S. Patent, 4981874.
Looareesuwan, S., Chulay, J. D., Canfield, C. J., & Hutchinson, D. B. (1999). Malarone (atovaquone and proguanil hydrochloride): a review of its clinical development for treatment of malaria. Malarone clinical trials study group. The American Journal of Tropical Medicine and Hygiene, 60(4), 533–541. https://doi.org/10.4269/ajtmh.1999.60.533
Malpezzi, L., Fuganti, C., Maccaroni, E., Masciocchi, N., & Nardi, A. (2010). Thermal and structural characterization of two polymorphs of Atovaquone and of its chloro derivative. Journal of Thermal Analysis and Calorimetry, 102(1), 203–210. https://doi.org/10.1007/s10973-010-0685-0
Mohtar, N., A K Khan, N., & Darwis, Y. (2015). Solid lipid nanoparticles of atovaquone based on 24 full-factorial design. Iranian Journal of Pharmaceutical Research, 14(4), 989–1000.
Narayana, R. M., Dhananjay, G. S., Venkatasubramanian, R. T., Kamlesh, D. S., & Gautam, R. P. (2010). Polymorphs of Atovaquone and process of preparation thereof. U. S. Patent, 7847112 B2.
Nayak, S., Mallik, S., Kanaujia, S., Sekar, K., Ranganathan, K., Ananthalakshmi, V., Jeyaraman, G., Saralaya, S., Rao, K., Shridhara, K., Nagarajan, K., & Row, T. (2013). Crystal structures and binding studies of atovaquone and its derivatives with cytochrome bc1: a molecular basis for drug design. CrystEngComm, 15, 4871-4884. https://doi.org/10.1039/C3CE40336J.
Olan, P., Mercer, A., Weatherley, B., Holdich, T., Meire, H., & Peck, R. (1994). Examination of some factors responsible for a food-induced increase in absorption of atovaquone. British Journal of Clinical Pharmacology, 37(1), 13–20.
Palsdottir, H., Lojero, C. G., Trumpower, B. L., & Hunte, C. (2003). Structure of the yeast cytochrome bc1 complex with a hydroxyquinone anion Qo site inhibitor bound. The Journal of Biological Chemistry, 278(33), 31303–31311. https://doi.org/10.1074/jbc.M302195200
Pangarkar, P. A., Wanare, R. S. & Tayde, A. M. 2013). Crystal modification of Atovaquone in presence of polyethylene glycol (PEG) 4000. International Journal of Pharmaceutical Sciences and Research, 4(12), 4632-4641. http://dx.doi.org/10.13040/IJPSR.0975-8232.4(12).4632-41
Purohit, R., & Venugopalan, P. (2009). Polymorphism: An overview. Resonance, 14(9), 882–893. https://doi.org/10.1007/s12045-009-0084-7
Raza, K. (2014). Polymorphism: The Phenomenon Affecting the Performance of Drugs. , 1. https://doi.org/10.15226/2374-6866/1/2/00111.
Ridley, R. G. (2002). Medical need, scientific opportunity and the drive for antimalarial drugs. Nature, 415(6872), 686–693. https://doi.org/10.1038/415686a
Roy, B. N., Singh, G. P., Lathi, P. S., Agrawal, M. K., Mitra, R., & Trivedi, A. (2013). A novel process for synthesis of Atovaquone. Indian Journal of Chemistry, 52(B), 1299-1312.
Sanjay, S. S., & Kanakamajalu, S. (2024). Synthesis and characterization of some novel sulfonate and carbonate prodrugs of Atovaquone, accomplished with better solubility profile. Mapana Journal of Sciences, 23(3), 61-79.
Santos, O. M. M., Reis, M. E. D., Jacon, J. T., Lino, M. E. de S., Simões, J. S., & Doriguetto, A. C. (2014). Polymorphism: an evaluation of the potential risk to the quality of drug products from the Farmácia Popular Rede Própria. Brazilian Journal of Pharmaceutical Sciences, 50(1), 1–24. https://doi.org/10.1590/s1984-82502011000100002
Saralaya, S. S., & Kanakamajalu, S. (2023). A progressive review on the synthesis of atovaquone (an anti-malarial drug), empowered by the critical examination of prior-art disclosures. Mediterranean Journal of Pharmacy and Pharmaceutical Sciences, 3(4), 33-53.
Sek, L., Boyd, B., Charman, W., & Porter, C. (2006). Examination of the impact of a range of Pluronic surfactants on the in‐vitro solubilisation behaviour and oral bioavailability of lipidic formulations of atovaquone. Journal of Pharmacy and Pharmacology, 58. https://doi.org/10.1211/jpp.58.6.0011.
Sodero, A. C. R., Abrahim-Vieira, B., Torres, P. H. M., Pascutti, P. G., Garcia, C. R., Ferreira, V. F., ... & Silva, F. P. (2017). Insights into cytochrome bc 1 complex binding mode of antimalarial 2-hydroxy-1, 4-naphthoquinones through molecular modelling. Memórias do Instituto Oswaldo Cruz, 112, 299-308.
Sordet, F., Aumjaud, Y., Fessi, H., & Derouin, F. (1998). Assessment of the activity of atovaquone-loaded nanocapsules in the treatment of acute and chronic murine toxoplasmosis. Parasite (Paris, France), 5(3), 223–229. https://doi.org/10.1051/parasite/1998053223
Spencer, C., & Goa, K. (1995). Atovaquone. A review of its pharmacological properties and therapeutic efficacy in opportunistic infections. Drugs, 50(1), 176-196.
Srivastava, I. K., & Vaidya, A. B. (1999). A mechanism for the synergistic antimalarial action of atovaquone and proguanil. Antimicrobial Agents and Chemotherapy, 43(6), 1334–1339. https://doi.org/10.1128/AAC.43.6.1334
Srivastava, I. K., Rottenberg, H., & Vaidya, A. B. (1997). Atovaquone, a broad spectrum antiparasitic drug, collapses mitochondrial membrane potential in a malarial parasite. The Journal of Biological Chemistry, 272(7), 3961–3966. https://doi.org/10.1074/jbc.272.7.3961
Stevens, A. M., Xiang, M., Heppler, L. N., Tošić, I., Jiang, K., Munoz, J. O., Gaikwad, A. S., Horton, T. M., Long, X., Narayanan, P., Seashore, E. L., Terrell, M. C., Rashid, R., Krueger, M. J., Mangubat-Medina, A. E., Ball, Z. T., Sumazin, P., Walker, S. R., Hamada, Y., … Frank, D. A. (2019). Atovaquone is active against AML by upregulating the integrated stress pathway and suppressing oxidative phosphorylation. Blood Advances, 3(24), 4215–4227. https://doi.org/10.1182/bloodadvances.2019000499
Takabe, H., Warnken, Z. N., Zhang, Y., Davis, D. A., Smyth, H. D. C., Kuhn, J. G., Weitman, S., & Williams, R. O., III. (2018). A repurposed drug for brain cancer: Enhanced atovaquone amorphous solid dispersion by combining a spontaneously emulsifying component with a polymer carrier. Pharmaceutics, 10(2), 60. https://doi.org/10.3390/pharmaceutics10020060
Tarur, V. R., Sathe, D. G., Mantripragada, N. R., Sawant, K. D., & Patel, G. R. (2006). Novel polymorphs of Atovaquone and process of preparation thereof. W. O. Patent, 2006008752 A1.
Teoh, X.-Y., Goh, C. F., Aminu, N., & Chan, S.-Y. (2020). Quantification of atovaquone from amorphous solid dispersion formulation using HPLC: An in vitro and ex vivo investigation. Journal of Pharmaceutical and Biomedical Analysis, 192(113631), 113631. https://doi.org/10.1016/j.jpba.2020.113631
Teoh, X.-Y., Teh, C.-T., & Chan, S.-Y. (2022). Exploring solid states of atovaquone: crystal or glass? Journal of Applied Crystallography, 55(5), 1267–1276. https://doi.org/10.1107/s1600576722007865
Teoh, X.-Y., Teh, C.-T., & Chan, S.-Y. (2022). Exploring solid states of atovaquone: crystal or glass? Journal of Applied Crystallography, 55(5), 1267–1276. https://doi.org/10.1107/s1600576722007865
Verdaguer, I. B., Crispim, M., Zafra, C. A., Sussmann, R. A. C., Buriticá, N. L., Melo, H. R., Azevedo, M. F., Almeida, F. G., Kimura, E. A., & Katzin, A. M. (2021). Exploring ubiquinone biosynthesis inhibition as a strategy for improving atovaquone efficacy in malaria. Antimicrobial Agents and Chemotherapy, 65(4). https://doi.org/10.1128/AAC.01516-20
Xiang, M., Kim, H., Ho, V. T., Walker, S. R., Bar-Natan, M., Anahtar, M., Liu, S., Toniolo, P. A., Kroll, Y., Jones, N., Giaccone, Z. T., Heppler, L. N., Ye, D. Q., Marineau, J. J., Shaw, D., Bradner, J. E., Blonquist, T., Neuberg, D., Hetz, C., … Frank, D. A. (2016). Gene expression–based discovery of atovaquone as a STAT3 inhibitor and anticancer agent. Blood, 128(14), 1845–1853. https://doi.org/10.1182/blood-2015-07-660506
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The copyright of the received article shall be assigned to the publisher of the journal. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to published articles. Therefore, the author must submit a statement of the Copyright Transfer Agreement.*)
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
In line with the license, authors and any users (readers and other researchers) are allowed to share and adapt the material. In addition, the material must be given appropriate credit, provided with a link to the license, and indicated if changes were made. If authors remix, transform or build upon the material, authors must distribute their contributions under the same license as the original.
*) Authors whose articles are accepted for publication will receive confirmation via email to send a Copyright Transfer Agreement.