AMMONIUM-MODIFIED NATURAL ZEOLITE: A PROMISING CATALYST FOR RENEWABLE DIESEL PRODUCTION – A REVIEW
DOI:
https://doi.org/10.21580/wjc.v8i1.26031Keywords:
ammonium-modified natural zeolite, catalyst, green diesel, hydrodeoxygenation, renewable fuelAbstract
The global shift toward sustainable energy has intensified research into renewable diesel production, owing to its superior fuel properties and environmental benefits. Catalysts play a crucial role in the hydrodeoxygenation of vegetable oils and biomass-derived feedstocks to produce green diesel. Natural zeolites, valued for their high thermal stability and tunable acidity, have emerged as cost-effective catalytic alternatives. This review explored recent advancements in the application of ammonium-modified natural zeolites as catalysts in green diesel production. Characterization techniques, including FT-IR (Fourier Transform Infrared Spectroscopy), XRD (X-ray Diffraction), SEM (Scanning Electron Microscopy), TG-DTG (Thermogravimetric Analysis), nitrogen adsorption isotherms, and NH₃-TPD (Temperature-Programmed Desorption of Ammonia), were employed to analyze NH₄⁺-zeolites. Results demonstrate that ammonium modification enhanced the acidity, porosity, and catalytic efficiency of natural zeolites, leading to improved deoxygenation selectivity and increased green diesel yields. The NH₄⁺-modified zeolite achieved a C₁₅ hydrocarbon selectivity of 70%, compared to 54% for the unmodified variant. Furthermore, introducing ammonium ions helped regulate acidity by mitigating excessive Brønsted acidity, ultimately reducing coke formation and improving catalyst stability. This review discusses the physicochemical properties and catalytic performance of ammonium-modified natural zeolites in green diesel production. It also addresses the challenges and future directions for scaling up their application in renewable fuel technologies
Downloads
References
Aisyah, A. N., Ni’maturrohmah, D., Putra, R., Ichsan, S., Kadja, G. T. M., & Lestari, W. W. (2023). Nickel Supported on MIL-96(Al) as an Efficient Catalyst for Biodiesel and Green Diesel Production from Crude Palm Oil. International Journal of Technology, 14(2), 276–289. https://doi.org/10.14716/ijtech.v14i2.5064
Aliana-Nasharuddin, N., Asikin-Mijan, N., Abdulkareem-Alsultan, G., Saiman, M. I., Alharthi, F. A., Alghamdi, A. A., & Taufiq-Yap, Y. H. (2019). Production of green diesel from catalytic deoxygenation of chicken fat oil over a series binary metal oxide-supported MWCNTs. RSC Advances, 10(2), 626–642. https://doi.org/10.1039/c9ra08409f
Ameen, M., Azizan, M. T., Ramli, A., Yusup, S., & Abdullah, B. (2020). The effect of metal loading over Ni/γ-Al2O3 and Mo/γ-Al2O3 catalysts on reaction routes of hydrodeoxygenation of rubber seed oil for green diesel production. Catalysis Today, 355, 51–64. https://doi.org/10.1016/j.cattod.2019.03.028
Arun, N., Sharma, R. V., & Dalai, A. K. (2015). Green diesel synthesis by hydrodeoxygenation of bio-based feedstocks: Strategies for catalyst design and development. Renewable and Sustainable Energy Reviews, 48, 240–255. https://doi.org/10.1016/j.rser.2015.03.074
Aziz, I., Sugita, P., Darmawan, N., & Dwiatmoko, A. A. (2023). Effect of desilication process on natural zeolite as Ni catalyst support on hydrodeoxygenation of palm fatty acid distillate (PFAD) into green diesel. South African Journal of Chemical Engineering, 45, 328–338. https://doi.org/10.1016/j.sajce.2023.07.002
Barbera, K., Lanzafame, P., Perathoner, S., Centi, G., Migliori, M., Aloise, A., & Giordano, G. (2016). HMF etherification using NH4-exchanged zeolites. New Journal of Chemistry, 40(5), 4300–4306. https://doi.org/10.1039/C5NJ03461B
Beheshti, M. S., Behzad, M., Ahmadpour, J., & Arabi, H. (2020). Modification of H-[B]-ZSM-5 zeolite for methanol to propylene (MTP) conversion: Investigation of extrusion and steaming treatments on physicochemical characteristics and catalytic performance. Microporous and Mesoporous Materials, 291, 109699. https://doi.org/10.1016/j.micromeso.2019.109699
Bonelli, B., Armandi, M., Areán, C. O., & Garrone, E. (2010). Ammonia-Solvated Ammonium Species in the NH4-ZSM-5 Zeolite. ChemPhysChem, 11(15), 3255–3261. https://doi.org/10.1002/cphc.201000477
Busca, G. (2017). Acidity and basicity of zeolites: A fundamental approach. Microporous and Mesoporous Materials, 254, 3–16. https://doi.org/10.1016/j.micromeso.2017.04.007
Deo, S., & Janik, M. J. (2021). Predicting an optimal oxide/metal catalytic interface for hydrodeoxygenation chemistry of biomass derivatives. Catalysis Science & Technology, 11(16), 5606–5618. https://doi.org/10.1039/D1CY00707F
Dwiatmoko, A. A., Seo, J., Choi, J. W., Suh, D. J., Jae, J., & Ha, J. M. (2019). Improved Activity of a CaCO3-Supported Ru Catalyst for the Hydrodeoxygenation of Eugenol as a Model Lignin-Derived Phenolic Compound. Catalysis Communications, 127, 45–50. https://doi.org/10.1016/j.catcom.2019.04.024
Farooqui, S. A., Kumar, R., Sinha, A. K., & Ray, A. (2022). Green Diesel Production by Hydroprocessing Technology. In Advances in Sustainability Science and Technology (pp. 109–148). Springer. https://doi.org/10.1007/978-981-19-2235-0_4
Graça, I., & Chadwick, D. (2020). NH4-exchanged zeolites: Unexpected catalysts for cyclohexane selective oxidation. Microporous and Mesoporous Materials, 294, 109873. https://doi.org/10.1016/j.micromeso.2019.109873
Gualtieri, A. F., & Passaglia, E. (2006). Rietveld structure refinement of NH4-exchanged natural chabazite. European Journal of Mineralogy, 18(3), 351–359. https://doi.org/10.1127/0935-1221/2006/0018-0351
Hakim, M. S., Iqbal, R. M., ’Adany, F., Putra, R., Nitriany, I., Telaumbanua, I. S., Sitorus, R. U., & Dewi, R. K. (2024). A Review on Development of Porous Aluminosilicate-Based Zeolite Adsorbent for Heavy Metal Pollution Treatment. Jurnal Sains Materi Indonesia, 25(2), 85–99. https://doi.org/10.55981/jsmi.2024.1076
Haw, J. F. (2002). Zeolite acid strength and reaction mechanisms in catalysis. Physical Chemistry Chemical Physics, 4(22), 5431–5441. https://doi.org/10.1039/b206483a
Hermida, L., Abdullah, A. Z., & Mohamed, A. R. (2015). Deoxygenation of fatty acid to produce diesel-like hydrocarbons: A review of process conditions, reaction kinetics and mechanism. Renewable and Sustainable Energy Reviews, 42, 1223–1233. https://doi.org/10.1016/j.rser.2014.10.099
Hongloi, N., Prapainainar, P., & Prapainainar, C. (2021). Review of green diesel production from fatty acid deoxygenation over Ni-based catalysts. Molecular Catalysis, 523, 111696. https://doi.org/10.1016/j.mcat.2021.111696
Kadja, G. T. M., Suprianti, T. R., Ilmi, M. M., Khalil, M., Mukti, R. R., & Subagjo. (2020). Sequential mechanochemical and recrystallization methods for synthesizing hierarchically porous ZSM-5 zeolites. Microporous and Mesoporous Materials, 308(10), 110550. https://doi.org/10.1016/j.micromeso.2020.110550
Kitaev, L. E., Bukina, Z. M., Yushchenko, V. V, Ionin, D. A., Kolesnichenko, N. V, & Khadzhiev, S. N. (2014). Physicochemical and Catalytic Characteristics of La-H-ZSM-5 Zeolite in Converting Dimethyl Ether to the Mixtures of Gasoline Hydrocarbons: Effect of Ion Exchange Conditions. Russian Journal of Physical Chemistry A, 88(3), 396–400. https://doi.org/10.1134/S003602441403011X
Kordulis, C., Bourikas, K., Gousi, M., Kordouli, E., & Lycourghiotis, A. (2016). Development of nickel based catalysts for the transformation of natural triglycerides and related compounds into green diesel: A critical review. Applied Catalysis B: Environmental, 181, 156–196. https://doi.org/10.1016/j.apcatb.2015.07.042
Kubička, D., Horáček, J., Setnička, M., Bulánek, R., Zukal, A., & Kubičková, I. (2014). Effect of support-active phase interactions on the catalyst activity and selectivity in deoxygenation of triglycerides. Applied Catalysis B: Environmental, 145, 101–107. https://doi.org/10.1016/j.apcatb.2013.01.012
Kubičková, I., & Kubička, D. (2010). Utilization of Triglycerides and Related Feedstocks for Production of Clean Hydrocarbon Fuels and Petrochemicals: A Review. Waste and Biomass Valorization, 1(3), 293–308. https://doi.org/10.1007/s12649-010-9032-8
Lanzafame, P., Papanikolaou, G., Barbera, K., Centi, G., & Perathoner, S. (2019). Etherification of HMF to biodiesel additives: The role of NH4+ confinement in Beta zeolites. Journal of Energy Chemistry, 36, 114–121. https://doi.org/10.1016/j.jechem.2019.07.009
Lanzafame, P., Papanikolaou, G., Perathoner, S., Centi, G., Giordano, G., & Migliori, M. (2020). Weakly acidic zeolites: A review on uses and relationship between nature of the active sites and catalytic behaviour. Microporous and Mesoporous Materials, 300, 110157. https://doi.org/10.1016/j.micromeso.2020.110157
Lanzafame, Paola, Barbera, K., Papanikolaou, G., Perathoner, S., Centi, G., Migliori, M., Catizzone, E., & Giordano, G. (2017). Comparison of H+ and NH4+ forms of zeolites as acid catalysts for HMF etherification. Catalysis Today, 304, 97–102. https://doi.org/10.1016/j.cattod.2017.08.004
Lestari, W. W., Hasanah, D. N., Putra, R., Mukti, R. R., & Nugrahaningtyas, K. D. (2018). Transformation of Indonesian Natural Zeolite into Analcime Phase under Hydrothermal Condition. IOP Conf. Series: Materials Science and Engineering, 349, 012068. https://doi.org/10.1088/1757-899X/349/1/012068
Liang, K. C., Yeh, F. M., Wu, C. G., & Lee, H. M. (2015). Gasoline Production by Dehydration of Dimethyl Ether with NH4-ZSM-5 Catalyst. Energy Procedia, 75, 554–559. https://doi.org/10.1016/j.egypro.2015.07.452
Liu, B., Li, S., Dai, W., Liu, F., Qin, W., Wang, M., Jia, Y., & Ma, Z. (2024). Unveiling the enhanced reactivity of NO ozonation on NH4-SAPO-34 zeolite : Ab initio molecular dynamics combined with experimental characteristics. Chemical Engineering Science, 300, 120548. https://doi.org/10.1016/j.ces.2024.120548
Liu, B., Xu, X., Liu, L., Dai, W., Jiang, H., & Yang, F. (2019). Catalytic Ozonation of NO with Low Concentration Ozone over Recycled SAPO-34 Supported Iron Oxide. Industrial & Engineering Chemistry Research, 58, 1525–1534. https://doi.org/10.1021/acs.iecr.8b04941
Long, F., Liu, W., Jiang, X., Zhai, Q., Cao, X., Jiang, J., & Xu, J. (2021). State-of-the-art technologies for biofuel production from triglycerides: A review. Renewable and Sustainable Energy Reviews, 148, 111269. https://doi.org/10.1016/j.rser.2021.111269
Mahdia, H. I., Bazargan, A., McKay, G., Azelee, N. I. W., & Meili, L. (2021). Catalytic Deoxygenation of Palm Oil and its Residue in Green Diesel Production: A Current Technological Review. Chemical Engineering Research and Design, 174, 158–187. https://doi.org/10.1016/j.cherd.2021.07.009
Mohammad, M., Kandaramath Hari, T., Yaakob, Z., Chandra Sharma, Y., & Sopian, K. (2013). Overview on the production of paraffin based-biofuels via catalytic hydrodeoxygenation. Renewable and Sustainable Energy Reviews, 22, 121–132. https://doi.org/10.1016/j.rser.2013.01.026
Muñoz-Arjona, A., Ayala-Cortés, A., Stasi, C. D., Torres, D., Pinilla, J. L., & Suelves, I. (2025). Catalytic hydrodeoxygenation of waste cooking oil into green diesel range hydrocarbons : From batch to continuous processing. Chemical Engineering Journal, 503, 158303. https://doi.org/10.1016/j.cej.2024.158303
Nugraha, R. E., Prasetyoko, D., Bahruji, H., Suprapto, S., Asikin-Mijan, N., Oetami, T. P., Jalil, A. A., Vo, D.-V. N., & Taufiq-Yap, Y. H. (2021). Lewis acid Ni/Al-MCM-41 catalysts for H2-free deoxygenation of Reutealis trisperma oil to biofuels. RSC Advances, 11(36), 21885–21896. https://doi.org/10.1039/d1ra03145g
Nugraha, R. E., Sunarti, A. R. Y., Tehubijuluw, H., & Mumtazah, Z. (2022). Effect of Catalyst Properties on the Deoxygenation Reaction of Vegetable Oil and Model Compound To Produce Diesel Range Hydrocarbon Fuels: a Review. Jurnal Kimia Riset, 7(1), 81–93. https://doi.org/10.20473/jkr.v7i1.35974
Oh, S., Lee, J. H., Choi, I. G., & Choi, J. W. (2020). Enhancement of bio-oil hydrodeoxygenation activity over Ni-based bimetallic catalysts supported on SBA-15. Renewable Energy, 149, 1–10. https://doi.org/10.1016/j.renene.2019.12.027
Papageridis, K. N., Charisiou, N. D., Douvartzides, S. L., Sebastian, V., Hinder, S. J., Baker, M. A., AlKhoori, S., Polychronopoulou, K., & Goula, M. A. (2020). Effect of operating parameters on the selective catalytic deoxygenation of palm oil to produce renewable diesel over Ni supported on Al2O3, ZrO2 and SiO2 catalysts. Fuel Processing Technology, 209, 106547. https://doi.org/10.1016/j.fuproc.2020.106547
Pattanaik, B. P., & Misra, R. D. (2017). Effect of reaction pathway and operating parameters on the deoxygenation of vegetable oils to produce diesel range hydrocarbon fuels: A review. Renewable and Sustainable Energy Reviews, 73, 545–557. https://doi.org/10.1016/j.rser.2017.01.018
Phan, D.-P., Pham, T. M., Lee, H., Tran, M. H., Park, E. D., Kim, J., & Lee, E. Y. (2023). Hydrodeoxygenation of stearic acid over zeolite–MOF composite-supported Pt catalysts. Journal of Industrial and Engineering Chemistry, 127, 590–599. https://doi.org/10.1016/j.jiec.2023.07.044
Phan, T. N., & Ko, C. H. (2017). Synergistic effects of Ru and Fe on titania-supported catalyst for enhanced anisole hydrodeoxygenation selectivity. Catalysis Today, 303, 219–226. https://doi.org/10.1016/j.cattod.2017.08.025
Prihadiyono, F. I., Lestari, W. W., Putra, R., Aqna, A. N. L., Cahyani, I. S., & Kadja, G. T. M. (2022). Heterogeneous Catalyst based on Nickel Modified into Indonesian Natural Zeolite in Green Diesel Production from Crude Palm Oil. International Journal of Technology, 13(4), 931–943. https://doi.org/10.14716/ijtech.v13i4.4695
Primo, A., & Garcia, H. (2014). Zeolites as catalysts in oil refining. Chem. Soc. Rev., 43(22), 7548–7561. https://doi.org/10.1039/C3CS60394F
Putra, R., Lestari, W. W., Susanto, B. H., & Kadja, G. T. M. (2022). Green diesel rich product (C-15) from the hydro-deoxygenation of refined palm oil over activated NH4+-Indonesian natural zeolite. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 44(3), 7483–7498. https://doi.org/10.1080/15567036.2022.2113934
Putra, R., Lestari, W. W., Wibowo, F. R., & Susanto, B. H. (2018). Fe/Indonesian Natural Zeolite as Hydrodeoxygenation Catalyst in Green Diesel Production from Palm Oil. Bulletin of Chemical Reaction Engineering & Catalysis, 13(2), 245–255. https://doi.org/10.9767/bcrec.13.2.1382.245-255
Rathouský, J., & Thommes, M. (2007). Adsorption properties and advanced textural characterization of novel micro/mesoporous zeolites. Studies in Surface Science and Catalysis, 170, 1042–1047. https://doi.org/10.1016/S0167-2991(07)80958-X
Rostami, M. S., Dabbagh, H. A., & Rostami, S. (2021). Investigation of the mechanism and effect of temperature on the reaction of conversion of oxygenated compounds to gasoline over NH4-ZSM-5. Journal of the Iranian Chemical Society, 19, 121–130. https://doi.org/10.1007/s13738-021-02291-z
Ruangudomsakul, M., Osakoo, N., Keawkumay, C., Kongmanklang, C., Butburee, T., Kiatphuengporn, S., Faungnawakij, K., Chanlek, N., Wittayakun, J., & Khemthong, P. (2021). Influential properties of activated carbon on dispersion of nickel phosphides and catalytic performance in hydrodeoxygenation of palm oil. Catalysis Today, 367, 153–164. https://doi.org/10.1016/j.cattod.2020.04.068
Suzuki, K., Noda, T., Katada, N., & Niwa, M. (2007). IRMS-TPD of ammonia : Direct and individual measurement of Brønsted acidity in zeolites and its relationship with the catalytic cracking activity. Journal of Catalysis, 250, 151–160. https://doi.org/10.1016/j.jcat.2007.05.024
Takeuchi, M., Tsukamoto, T., Kondo, A., & Matsuoka, M. (2015). Investigation of NH3 and NH4+ adsorbed on ZSM-5 zeolites by near and middle infrared spectroscopy. Catalysis Science and Technology, 5(9), 4587–4593. https://doi.org/10.1039/c5cy00753d
Whiteside, A., Xantheas, S. S., & Gutowski, M. (2011). Is electronegativity a useful descriptor for the Pseudo-Alkali metal NH4?. Chemistry - A European Journal, 17(47), 13197–13205. https://doi.org/10.1002/chem.201101949
Wijayapala, R., Karunanayake, A. G., Proctor, D., Yu, F., Pittman, C. U., & Mlsna, T. E. (2017). Hydrodeoxygenation (HDO) of Bio-Oil Model Compounds with Synthesis Gas Using a Water Gas Shift Catalyst with a Mo/Co/K Catalyst. In Handbook of Climate Change Mitigation and Adaptation (pp. 1903–1935). Springer International Publishing. https://doi.org/10.1007/978-3-319-14409-2_79
Wu, W., & Weitz, E. (2014). Modification of acid sites in ZSM-5 by ion-exchange: An in-situ FTIR study. Applied Surface Science, 316(1), 405–415. https://doi.org/10.1016/j.apsusc.2014.07.194
Yan, P., Kennedy, E. M., Rabiee, H., Weng, Y., Peng, H., Ma, B., Zhu, Z., & Stockenhuber, M. (2025). Recent advances in heterogeneous catalysts for biocrude hydrodeoxygenation. Green Chemistry. https://doi.org/10.1039/D4GC05059B
Yan, P., Kennedy, E., & Stockenhuber, M. (2021a). Hydrodeoxygenation of guiacol over ion-exchanged ruthenium ZSM-5 and BEA zeolites. Journal of Catalysis, 396, 157–165. https://doi.org/10.1016/j.jcat.2021.02.013
Yan, P., Kennedy, E., & Stockenhuber, M. (2021b). Natural zeolite supported Ni catalysts for hydrodeoxygenation of anisole. Green Chemistry, 23(13), 4673–4684. https://doi.org/10.1039/d0gc04377j
Yan, P., Nur, I., Peng, H., Rabiee, H., Ahmed, M., Weng, Y., Zhu, Z., Kennedy, E. M., & Stockenhuber, M. (2023). Catalytic hydropyrolysis of biomass using natural zeolite-based catalysts. Chemical Engineering Journal, 476, 146630. https://doi.org/10.1016/j.cej.2023.146630
Yao, J., He, Y., Zeng, Y., Feng, X., Fan, J., Komiyama, S., Yong, X., Zhang, W., Zhao, T., Guo, Z., Peng, X., Yang, G., & Tsubaki, N. (2022). Ammonia pools in zeolites for direct fabrication of catalytic centers. Nature Communications, 13, 935. https://doi.org/10.1038/s41467-022-28606-z
Zamani, A. S., & Saidi, M. (2024). Green diesel alkanes production by hydrodeoxygenation of neem seed oil over nickel-zeolite based catalyst. International Journal of Hydrogen Energy, 96, 85–96. https://doi.org/10.1016/j.ijhydene.2024.11.324
Zecchina, A., Marchese, L., Bordiga, S., Paze, C., & Gianotti, E. (1997). Vibrational spectroscopy of NH4+ ions in zeolitic materials: An IR study. Journal of Physical Chemistry B, 101(48), 10128–10135. https://doi.org/10.1021/jp9717554
Zhang, J., Tang, X., Yi, H., Yu, Q., Zhang, Y., Wei, J., & Yuan, Y. (2022). Synthesis, characterization and application of Fe-zeolite: A review. Applied Catalysis A: General, 630, 118467. https://doi.org/10.1016/j.apcata.2021.118467
Zhang, M., Hu, Y., Wang, H., Li, H., Han, X., Zeng, Y., & Xu, C. C. (2021). A review of bio-oil upgrading by catalytic hydrotreatment: Advances, challenges, and prospects. Molecular Catalysis, 504, 111438. https://doi.org/10.1016/j.mcat.2021.111438
Žula, M., Grilc, M., & Likozar, B. (2022). Hydrocracking, hydrogenation and hydro-deoxygenation of fatty acids, esters and glycerides: Mechanisms, kinetics and transport phenomena. Chemical Engineering Journal, 444, 136564. https://doi.org/10.1016/j.cej.2022.136564
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The copyright of the received article shall be assigned to the publisher of the journal. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to published articles. Therefore, the author must submit a statement of the Copyright Transfer Agreement.*)
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
In line with the license, authors and any users (readers and other researchers) are allowed to share and adapt the material. In addition, the material must be given appropriate credit, provided with a link to the license, and indicated if changes were made. If authors remix, transform or build upon the material, authors must distribute their contributions under the same license as the original.
*) Authors whose articles are accepted for publication will receive confirmation via email to send a Copyright Transfer Agreement.