Pengaruh Variasi Konsentrasi Montmorillonit Terhadap Sifat dan Kinerja Membran Kitosan/PVA/MMT Untuk Aplikasi DMFC
DOI:
https://doi.org/10.21580/wjc.v3i1.6018Keywords:
membran, kitosan, Direct Methanol Fuel Cell, sel bahan bakar, material kompositAbstract
Sintesis membran komposit kitosan/PVA/MMT telah berhasil dilakukan dengan menggunakan metode inversi fasa. Pada penelitian ini, kitosan/polivinil alkohol sebagai matriks polimer, K-montmorillonit (MMT) sebagai filler anorganik dengan asam sulfat sebagai agen pengikat silang. Tujuan penelitian ini adalah untuk mengetahui pengaruh variasi konsentrasi montmorilonit (1, 2, dan 4%) terhadap sifat dan kinerja membran komposit. Hasil sintesis membran komposit telah dikonfirmasi dengan adanya serapan gugus fungsi yang khas pada FTIR. Modifikasi dengan polivinil alkohol (PVA) dan montmorillonit menunjukkan dapat memperbaiki sifat dan kinerja membran komposit. Peningkatan konsentrasi montmorillonit cenderung menaikkan water uptake dan methanol uptake. Membran CS/PVA/MMT 4% merupakan membran yang menjanjikan dengan kinerja yang lebih baik daripada membran yang lain, dengan persentase water uptake yang tinggi dan methanol uptake rendah, selain itu memiliki nilai permeabilitas metanol yang sangat rendah yaitu 7,165 x 10-8 cm2/s.
Downloads
References
Abu-Saied, M. A. et al. (2020) ‘Novel sulphonated poly (vinyl chloride)/poly (2-acrylamido-2-methylpropane sulphonic acid) blends-based polyelectrolyte membranes for direct methanol fuel cells’, Polymer Testing. Elsevier Ltd, 89(May), p. 106604. doi: 10.1016/j.polymertesting.2020.106604.
Barragán, V. M. et al. (2004) ‘Transport of methanol and water through Nafion membranes’, Journal of Power Sources, 130(1–2), pp. 22–29. doi: 10.1016/j.jpowsour.2003.12.007.
Enggita, A. P. and Santoso, E. (2015) ‘Pengaruh Komposisi terhadap Perilaku Membran’, Jurnal Sains dan Seni ITS, 4(2), pp. 1–5.
Gurau, B. and Smotkin, E. S. (2002) ‘Methanol crossover in direct methanol fuel cells: A link between power and energy density’, Journal of Power Sources, 112(2), pp. 339–352. doi: 10.1016/S0378-7753(02)00445-7.
Junianto, M. (2017) Efek asam sulfosuksinat terhadap sifat fisik komposit kitosan/montmorillonit. Skripsi, tidak dipublikasikan. Institut Teknologi Sepuluh Nopember.
Kakati, N. et al. (2015) ‘An approach of balancing the ionic conductivity and mechanical properties of PVA based nanocomposite membrane for DMFC by various crosslinking agents with ionic liquid’, International Journal of Hydrogen Energy. Elsevier Ltd, 40(22), pp. 7114–7123. Available at: http://dx.doi.org/10.1016/j.ijhydene.2015.04.004.
Khan, T. A., Peh, K. K. and Ch’ng, H. S. (2002) ‘Reporting degree of deacetylation values of chitosan: The influence of analytical methods’, Journal of Pharmacy and Pharmaceutical Sciences, 5(3), pp. 205–212.
Lavorgna, M. et al. (2010) ‘Study of the combined effect of both clay and glycerol plasticizer on the properties of chitosan films’, Carbohydrate Polymers. doi: 10.1016/j.carbpol.2010.04.054.
Li, L., Xu, L. and Wang, Y. (2003) ‘Novel proton conducting composite membranes for direct methanol fuel cell’, Materials Letters, 57(8), pp. 1406–1410.
Liu, B. et al. (2011) ‘Rapid modification of montmorillonite with novel cationic Gemini surfactants and its adsorption for methyl orange’, Materials Chemistry and Physics, 130(3), pp. 1220–1226.
Liu, Hai et al. (2016) ‘Chitosan/silica coated carbon nanotubes composite proton exchange membranes for fuel cell applications’, Carbohydrate Polymers. Elsevier Ltd., 136, pp. 1379–1385. doi: 10.1016/j.carbpol.2015.09.085.
Liu, X. W., Hu, M. and Hu, Y. H. (2008) ‘Chemical composition and surface charge properties of montmorillonite’, Journal of Central South University of Technology (English Edition). doi: 10.1007/s11771-008-0037-4.
Ma, J. and Sahai, Y. (2013) ‘Chitosan biopolymer for fuel cell applications’, Carbohydrate Polymers. Elsevier Ltd., 92(2), pp. 955–975. doi: 10.1016/j.carbpol.2012.10.015.
Miyake, N., Wainright, J. S. and Savinell, R. F. (2001) ‘Evaluation of a Sol-Gel Derived Nafion/Silica Hybrid Membrane for Polymer Electrolyte Membrane Fuel Cell Applications: II. Methanol Uptake and Methanol Permeability’, Journal of The Electrochemical Society, 148(8), p. A905.
Purwanto, M. et al. (2016) ‘Biopolymer-based electrolyte membranes from chitosan incorporated with montmorillonite-crosslinked GPTMS for direct methanol fuel cells’, RSC Advances. Royal Society of Chemistry, 6(3), pp. 2314–2322. Available at: http://dx.doi.org/10.1039/C5RA22420A.
Ren, X. (1995) ‘Methanol Cross-over in Direct Methanol Fuel Cells’, ECS Proceedings Volumes, 1995–23(1), pp. 284–298. doi: 10.1149/199523.0284pv.
Safitri, G. (2016). Pengaruh variasi komposisi PVA/Kitosan terhadap perilaku membran komposit PVA/Kitosan/Grafin Oksida yang terikat silang Trisodium Sitrat. Skripsi, tidak dipublikasikan. Institut Teknologi Sepuluh Nopember
Smitha, B., Sridhar, S. and Khan, A. A. (2005) ‘Synthesis and characterization of poly(vinyl alcohol)-based membranes for direct methanol fuel cell’, Journal of Applied Polymer Science, 95(5), pp. 1154–1163.
Tripathi, B. P. and Shahi, V. K. (2011) ‘Organic-inorganic nanocomposite polymer electrolyte membranes for fuel cell applications’, Progress in Polymer Science (Oxford). Elsevier Ltd, 36(7), pp. 945–979. Available at: http://dx.doi.org/10.1016/j.progpolymsci.2010.12.005.
Umar, S., Permana, D. and Atmaja, L. (2016) ‘Effect of Glutaraldehyde Concentration Variation toward Properties and Performance of Composite Membrane (Chi-Mmt) for DMFC Application’, 2(1), pp. 199–200.
Vaghari, H. et al. (2013) ‘Recent advances in application of chitosan in fuel cells’, Sustainable Chemical Processes. doi: 10.1186/2043-7129-1-16.
Zhu, J. et al. (2015) ‘Fabrication of a novel “loose” nanofiltration membrane by facile blending with Chitosan-Montmorillonite nanosheets for dyes purification’, Chemical Engineering Journal. Elsevier B.V., 265, pp. 184–193. Available at: http://dx.doi.org/10.1016/j.cej.2014.12.054.
Downloads
Published
Issue
Section
License
The copyright of the received article shall be assigned to the publisher of the journal. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to published articles. Therefore, the author must submit a statement of the Copyright Transfer Agreement.*)
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
In line with the license, authors and any users (readers and other researchers) are allowed to share and adapt the material. In addition, the material must be given appropriate credit, provided with a link to the license, and indicated if changes were made. If authors remix, transform or build upon the material, authors must distribute their contributions under the same license as the original.
*) Authors whose articles are accepted for publication will receive confirmation via email to send a Copyright Transfer Agreement.