Perbandingan Aktivitas Reaksi Fotodegradasi Remazol Red dengan TiO2 Anatas 50%-Rutil 50% dan TiO2 Anatas Tersupport AgI

Sri Rejeki Dwi Astuti*  -  Universitas Negeri Yogyakarta, Indonesia
Anggi Ristiyana Puspita Sari  -  Universitas Palangkaraya, Indonesia
Karlinda Karlinda  -  Universitas Negeri Yogyakarta, Indonesia

(*) Corresponding Author

Kandungan ikatan azo dalam zat pewarna tekstil remazol red mengakibatkan zat warna lebih mudah larut dalam air dan memiliki stabilitas yang tinggi. Hal ini menyebabkan limbah tekstil memerlukan penanganan khusus agar aman dan tidak memberikan dampak negatif ketika dilepas ke perairan. Salah satu cara alternatif untuk menangani limbah non-degradable adalah dengan menggunakan metode fotodegradasi dengan bantuan fotokatalis. Penelitian ini bertujuan untuk membandingkan aktivitas reaksi fotodegradasi remazol red dengan fotokatalis TiO2 anatas 50%-rutil 50% dan TiO2 anatas tersupport AgI. Proses fotodegradasi Remazol red dilakukan dengan memvariasi fotokatalis yang digunakan yaitu fotokatalisis TiO2 anatas 50%-rutil 50% dan TiO2 anatas tersupport AgI dan lama waktu penyinaran yaitu 15 menit, 30 menit, 45 menit, 60 menit, 75 menit, dan 90 menit. Untuk mengetahui pengaruh lama penyinaran terhadap fotodegradasi Remazol red, maka dilakukan pengukuran absorbansi larutan menggunakan spectronic 200 pada panjang gelombang 558nm setiap selang waktu 15 menit. Hasil aktivitas fotokatalitis menunjukkan persentase degradasi remazol red pada sistem TiO2 anatas tersupport AgI, TiO2 anatas 50%-rutil 50% dan tanpa katalis berturut-turut sebesar 32%, 16%, dan 7%. Oleh karena itu fotokatalis TiO2 anatas tersupport AgI memiliki aktivitas fotokatalisis yang lebih baik daripada fotokatalis TiO2 anatas 50% - rutil 50%

Keywords: fotodegradasi; remazol red; TiO2 anatas 50% - rutil 50%; TiO2 anatas tersupport AgI

  1. Akel, S., Dillert, R., Balayeva , N.O., Boughaled, R., Koch, J., El Azzouzi, M., & Bahnemann, D. W. (2018). Ag/Ag2O as a co-catalyst in TiO2 photocatalysis: Effect of the co-catalyst/photocatalyst mass ratio. Catalysts, 8(647), 1-19.
  2. Anbalagan, A. (2012). Combination of biological and photochemical treatment for degradation of azo dyes. Tesis, tidak dipublikasikan. Uppsala University. Uppsala.
  3. Andari, N.D., & Wardhani, S. (2014). Fotokatalisis TIO2-zeolit untuk degradasi metilen biru. Chem.Prog, 7(1), 9-14.
  4. Ara, N. J., Hasan, A., Rahman, M.A., Salam, A., & Alam, S. (2013). Removal of remazol red from textile waste water using treated sawdust - An effective way of effluent treatment. Bangladesh Pharmaceutical Journal, 16(1), 93-98.
  5. Bacsa, R.R., & Kiwi, J. (1998). Effect of rutile phase on the photocatalytic properties of nanocrystalline titania during the degradation of p-coumaric acid. Appl. Catal. B, 16, 19–29.
  6. Barrientos, L., Allende, P., Bercero, M.A., Becerra, J. R., & Jensen, L. C. (2018). Controlled Ag-TiO2 hetero-junction by combining physical vapor deposition and bifunctional surface modifiers. Journal of Physics and Chemistry of Solids, 119, 147-146.
  7. Bubacz, K., Choina, J., Dolat, D., & Morawski, A. W. (2010). Methylene blue and phenol photocatalytic degradation on nanoparticles of anatase TiO2. Polish J. of Environ. Stud, 19(4), 685-691.
  8. Carini Jr, G., Parrino, F., Palmisano, G., Scandura, G., Citro, I., & Calogero, A. (2015). Nanostructured anatase TiO2 densified at high pressure as advanced visible light photocatalysts. Photochemical & Photobiological Sciences, 14, 1685-1693.
  9. de Sousa, M.L., de Moraes, P.B., Lopes, P. R., Montagnolli, R. N., de Angelis, D. F., & Bidoia, E. D. (2012). Contamination by remazol red brilliant dye and its impact in aquatic photosynthetic microbiota. Environmental Management and Sustainable Development, 1(2), 129-138.
  10. Fischer , K., Gawel, A., Rosen , D., Krause, M., Latif, A. A., Griebel, J., Prager, A., Schulze, A. (2017). Low-temperature synthesis of anatase/rutile/brookite TiO2 nanoparticles on a polymer membrane for photocatalysis. Catalysts, 7(209), 1-14.
  11. Gustiani, S., Notodarmodjo, S., Syafila, M., & Radiman, C. L. (2014). Dekolorisasi fotokatalitik zat warna remazol black 5 dengan menggunakan nanopartikel TiO2 dan Ag yang termobilisasi pada nanofiber selulosa bakterial (SB). Arena Tekstil, 29(2), 107-114.
  12. He, X., Sanders, S., Aker, W.G., Aker, Y., Douglas, J., & Hwang, H. (2016). Assessing the effect of surface-bound humic acid on the phototoxicity of anatase and rutile TiO2 nanoparticles in vitro. Journal of Environmental Sciences, 42, 50-60.
  13. Holm, A., Hamandi, M., Simonet, F., Jouguet, B., Dappozze, F., & Guillard, C. (2019). Impact of rutile and anatase phase on the photocatalytic decomposition of lactic acid. Applied Catalysis B: Environmental, 253, 96-104.
  14. Islam, M.A., Uddin, M.R., Amin, M.S., Haque, M.I., & Molla, M.S. (2013). Design and operation of a photocataytic reactor: A study of dye (methylene) removal process. Journal of Chemical Engineering, 28(1), 41-44.
  15. Kakuma, Y., Nosaka, A.Y., & Nosaka, Y. (2015). Difference in TiO2 photocatalytic mechanism between rutile and anatase studied by detections of active oxygen and surface species in water. Physical Chemistry Chemical Physics, 17, 18691-18698.
  16. Khalik, W.F., Ho, L.N., Ong, S. A., Wong, Y.S., Yusoff, N.A., & Ridwan, F. (2015). Decolorization and mineralization of batik wastewater through solar photocatalytic process. Sains Malaysiana, 44(4), 607-612.
  17. Khatae, A. R., Aleboyeh , H., & Aleboyeh, A. (2009). Crystallite phase-controlled preparation, characterisation and photocatalytic properties of titanium dioxide nanoparticles. Journal of Experimental Nanoscience, 4(2), 121-137.
  18. Kim, S. J., Lee, E. G., Park, S. D., Jeon, C. J., Cho, Y. H., Rhee, C. K., & Kim, W. W. (2001). Photocatalytic effects of rutile phase TiO2 ultrafine powder with high specific surface area obtained by a homogeneous precipitation process at low temperatures. J. Sol-Gel Sci. Technol, 22, 63–74.
  19. Lee, S. Y., Kang, D., Jeong, S., Do, H. T., & Kim, J. H. (2020). Photocatalytic degradation of rhodamine B dye by TiO2 and gold nanoparticles supported on a floating porous polydimethylsiloxane sponge under ultraviolet and visible light irradiation. ACS Omega, 5, 4233−4241.
  20. Mohamed, M.A., Salleh, W.N., Jaafar, J., & Yusof, N. (2014). Preparation and photocatalytic activity of mixed phase anatase/rutile TiO2 nanoparticles for phenol degradation. Jurnal Teknologi, 70(2), 65-70.
  21. Pawar, M., Sendoğdular, S.T., & Gouma, P. (2018). A brief overview of TiO2 photocatalyst for organic dye remediation: Case study of reaction mechanismsiInvolved in Ce-TiO2 photocatalysts system. Journal of Nanomaterials, 2018, 1-13.
  22. Priya, E.S., Selvan, P.S., & Umayal, A.N. (2015). Biodegradation studies on dye effluent and selective remazol dyes by indigenous bacterial species through spectral characterisation. Desalination and Water Treatment, 55(1), 241-251.
  23. Reddy, M.P., Venugopal, A., & Subrahmanyam, M. (2007). Hydroxyapatite-supported Ag–TiO2 as escherichia coli disinfection photocatalyst. Water Research, 41, 379-386.
  24. Saggioro, E.M., Oliveira, A.S., Pavesi, T., Maia, C.G., Ferreira, L.F., & Moreira, J.C. (2011). Use of titanium dioxide photocatalysis on the remediation of model textile wastewaters containing azo dyes. Molecules, 16, 10370-10386.
  25. Sangchay, W., Sikong, L., & Kooptarnond, K. (2011). Comparison of photocatalytic reaction of commercial P25 and synthetic TiO2-AgCl nanoparticles. Procedia Engineering (pp. 590-596). Amsterdam: Elsevier.
  26. Saratale, R.G., Gandhi, S.S., Purankar, M.V., Kurade, M.B., Govindwar, S. P., Oh, S.E., & Saratale, G.D. (2013). Decolorization and detoxification of sulfonated azo dye C.I. Remazol Red and textile effluent by isolated Lysinibacillus sp. RGS. Journal of Bioscience and Bioengineering, 115(6), 658-667.
  27. Scanlon, D.O., Dunnill, C.W., Buckeridge, J., Shevlin, S.A., Logsdail, A.J., Woodley, S.M., Catlow, C.R.A., Palgrave, R.G., Parkin, I.P., Watson, G.W., Keal, T.W., Sherwood, P., Walsh, A., Sokol, A.A. (2013). Band alignment of rutile and anatase TiO2. Nature Materials, 12(9), 798-801.
  28. Su, R., Bechstein, R., Vang, R. T., Sillassen, M., Esbjornsson, B., Palmqvis, A., & Besenbacher, F. (2011). How the anatase-to-rutile ratio influences the photoreactivity of TiO2. The Journal of Physical Chemistry, 115, 24287-24292.
  29. Uribe, C.D., Viloria, J., Cervantes, L., Vallejo, W., Navarro, K., Romero, E., & Quiñones, C. (2018). Photocatalytic activity of Ag-TiO2 composites deposited by photoreduction under UV irradiation. International Journal of Photoenergy, 2018, 1-8.
  30. Widihati, I.A., Diantariani, N.P., & Nikmah, Y.F. (2011). Fotodegradasi metilen biru dengan sinar UV dan katalis Al2O3. Jurnal Kimia, 5(1), 31-42.
  31. Wijaya, K., Wijaya, E., Fatimah, I., Fatimah, I., & Rudatiningsih. (2006). Photodegradation of alizarin s dye using TiO2-zeolite and UV radiation. Indo. J. Chem., 6(1), 32-37.
  32. Yang, S.Y., Chen, Y.Y., Zheng, J.G., & Cui, Y.J. (2006). Enhanced photocatalytic activity of TiO2 by surface fluorination in degradation of organic cationic compound. Journal of Environmental Science, 19(1), 86-89.
  33. Yu, J., & Wang, B. (2010). Effect of calcination temperature on morphology and photoelectrochemical properties of anodized titanium dioxide nanotube arrays. Appl. Catal. B Environ, 94, 295–302.

Open Access Copyright (c) 2021 Walisongo Journal of Chemistry
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

WJC: Walisongo Journal of Chemistry
Published by the Department of Chemistry
Faculty of Science and Technology
Universitas Islam Negeri Walisongo Semarang
Jl Prof. Dr. Hamka Kampus III Ngaliyan Semarang 50185
Website: https://journal.walisongo.ac.id/index.php/wjc
Email: wjc@walisongo.ac.id  wjc@walisongo.ac.id

ISSN: 2549-385X (Print)
ISSN: 2621-5985 (Online)




 

apps