Universitas Islam Negeri Walisongo Semarang - Indonesia
Analysis of chest X-Ray (CXR) images in COVID-19 patients based on age using the Otsu thresholding segmentation method
The infection with the COVID-19 virus or better known as the Corona virus spread throughout China and other countries around the world until it was designated a pandemic by the World Health Organization (WHO). Detection of patients infected with COVID-19 in the form of RT-PCR, CT-Scan images and Chest X-Ray (CXR). This study aims to analyze CXR images of COVID-19 patients based on age using Otsu Thresholding Segmentation. The image segmentation process uses the Otsu auto-tresholding method to separate objects from the background on the CXR image. The results show that the images of COVID-19 patients have pneumonia spots that are not visible on the original CXR image. The average value of the accuracy of the Otsu Thresholding results is 95.18%. Penunomia spots are mostly found in COVID-19 patients aged 50 to 70 years and over which cause severe lung damage.
©2021 JNSMR UIN Walisongo. All rights reserved.
Keywords: COVID-19; segmentation; Otsu thresholding; CXR; age
- W. Swastika, P. Studi, T. Informatika, and P. Korespondensi, “Studi Awal Deteksi Covid-19 Menggunakan Citra CT Berbasis Deep Preliminary Study Of Covid-19 Detection Using CT Image Based On,” vol. 7, no. 3, pp. 629–634, 2020, doi: 10.25126/jtiik.202073399.
- Satuan Tugas COVID-19, “Peta Sebaran Covid-19,” Gugus Tugas Percepatan Penanganan Covid-19, 2021. https://covid19.go.id/peta-sebaran.
- S. Richardson et al., “Presenting Characteristics, Comorbidities, and Outcomes among 5700 Patients Hospitalized with COVID-19 in the New York City Area,” JAMA - J. Am. Med. Assoc., vol. 323, no. 20, pp. 2052–2059, 2020, doi: 10.1001/jama.2020.6775.
- K. C. Liu et al., “CT manifestations of coronavirus disease-2019: A retrospective analysis of 73 cases by disease severity,” Eur. J. Radiol., vol. 126, no. February, p. 108941, 2020, doi: 10.1016/j.ejrad.2020.108941.
- D. Wang et al., “Clinical Characteristics of 138 Hospitalized Patients with 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China,” JAMA - J. Am. Med. Assoc., vol. 323, no. 11, pp. 1061–1069, 2020, doi: 10.1001/jama.2020.1585.
- Z. P. Ali Narin, Ceren Kaya, “Automatic Detection of Coronavirus Disease (COVID-19) Using X-ray Images and Deep Convolutional Neural Networks.”
- J. Zhang, Y. Xie, Y. Li, C. Shen, and Y. Xia, “COVID-19 Screening on Chest X-ray Images Using Deep Learning based Anomaly Detection,” 2020.
- M. Hosseiny, S. Kooraki, A. Gholamrezanezhad, S. Reddy, and L. Myers, “Radiology Perspective of Coronavirus Disease 2019 (COVID-19): Lessons From Severe Acute Respiratory Syndrome and Middle East Respiratory Syndrome,” no. May, pp. 1078–1082, 2020.
- H. Yuen Frank Wong et al., “Frequency and Distribution of Chest Radiographic Findings in COVID-19 Positive Patients Authors,” Radiology, vol. xxx, p. xxx, 2020.
- Y. S. Hariyani, S. Hadiyoso, and T. S. Siadari, “Deteksi Penyakit Covid-19 Berdasarkan Citra X-Ray Menggunakan Deep Residual Network,” ELKOMIKA J. Tek. Energi Elektr. Tek. Telekomun. Tek. Elektron., vol. 8, no. 2, p. 443, 2020, doi: 10.26760/elkomika.v8i2.443.
- M. Ghozali and H. Sumarti, “Deteksi Tepi pada Citra Rontgen Penyakit COVID-19 Menggunakan Metode Sobel,” J. Imejing Diagnostik, vol. 6, pp. 51–59, 2020.
- M. S. Wibawa and I. M. A. W. Putra, “Studi Komparasi Metode Segmentasi Paru-Paru Pada Citra CT-Scan Aksial,” vol. 7, pp. 283–292, 2018.
- V. Rajinikanth, N. Dey, A. N. J. Raj, A. E. Hassanien, K. C. Santosh, and N. S. M. Raja, “Harmony-Search and Otsu based System for Coronavirus Disease (COVID-19) Detection using Lung CT Scan Images,” Appl. Sci., vol. 6, no. April 2020, 2020, [Online]. Available: http://arxiv.org/abs/2004.03431.
- Y. Liu et al., “Association between age and clinical characteristics and outcomes of COVID-19,” Eur. Respir. J., vol. 318, no. 6, 2020, doi: 10.1183/13993003.01112-2020.
- J. Paul Cohen, “Open database of COVID-19 cases with chest X-ray or CT images,” 2020. [Online]. Available: https://github.com/ieee8023/covid-chestxray-dataset.
- D. R. Anamisa, “Rancang Bangun Metode OTSU Untuk Deteksi Hemoglobin,” S@Cies, vol. 5, no. 2, pp. 106–110, 2015, doi: 10.31598/sacies.v5i2.64.
- D. Abdullah, E. D. Putra, and J. Pseudocode, “Segmentasi Pada Citra Digital Metode Fuzzy C-Means Dan Otsu,” pp. 72–80, 2017.
- R. T. Wahyuningrum, “Segmentasi Obyek Pada Citra Digital Menggunakan,” vol. 13, no. 1, pp. 1–8, 2015, doi: 10.9744/informatika.13.1.1-8.
- D. Putra, “Binerisasi citra tangan dengan metode otsu,” vol. 3, no. 2, pp. 11–13, 2004.
- T. Arifin, “Analisa Perbandingan Metode Segmentasi Citra Pada Citra Mammogram,” J. Inform., vol. 3, no. 2, pp. 156–163, 2016.
- R. Kosasih, “Pendeteksian tumor otak dengan menggunakan metode segmentasi otsu,” no. August 2017, 2019.
- M. I. Farih, L. Hakim, and M. Munir, “Segmentasi Citra Wayang Dengan Metode Otsu,” vol. 11, no. 01, pp. 8–18, 2016.
- A. Borghesi et al., “Radiographic severity index in COVID-19 pneumonia: relationship to age and sex in 783 Italian patients,” Radiol. Medica, vol. 125, no. 5, pp. 461–464, 2020, doi: 10.1007/s11547-020-01202-1.
- R. Hossain et al., “CT scans obtained for nonpulmonary indications: Associated respiratory findings of COVID-19,” Radiology, vol. 296, no. 3, pp. E173–E179, 2020, doi: 10.1148/radiol.2020201743.
- T. H. Siagian, “Corona Dengan Discourse Network Analysis,” J. Kebijak. Kesehat. Indones., vol. 09, no. 02, pp. 98–106, 2020.
- T. Ozturk, M. Talo, E. A. Yildirim, U. B. Baloglu, O. Yildirim, and U. Rajendra Acharya, “Automated detection of COVID-19 cases using deep neural networks with X-ray images,” Comput. Biol. Med., vol. 121, no. April, p. 103792, 2020, doi: 10.1016/j.compbiomed.2020.103792.
- C. Shen et al., “Comparative Analysis of Early-Stage Clinical Features Between COVID-19 and Influenza A H1N1 Virus Pneumonia,” Front. Public Heal., vol. 8, no. May, pp. 1–7, 2020, doi: 10.3389/fpubh.2020.00206.
- A. R. Sahin, “2019 Novel Coronavirus (COVID-19) Outbreak: A Review of the Current Literature,” Eurasian J. Med. Oncol., vol. 4, no. 1, pp. 1–7, 2020, doi: 10.14744/ejmo.2020.12220.
- X. Chen et al., “Differences between COVID-19 and suspected then confirmed SARS-CoV-2-negative pneumonia: A retrospective study from a single center,” J. Med. Virol., vol. 92, no. 9, pp. 1572–1579, 2020, doi: 10.1002/jmv.25810.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.