Classification of Pneumonia in Thoracic X-Ray images based on texture characteristics using the MLP (Multi-Layer Perceptron) method
DOI:
https://doi.org/10.21580/jnsmr.2020.6.2.11228Keywords:
pneumoniae, texture characteristics, MLP method, WEKA machine learningAbstract
One of the diseases that attack the lungs is pneumonia. This disease can attack someone with a weak immune system. Pneumonia is inflammation of the lungs that can be caused by pathogens, such as bacteria, viruses, and fungi. The purpose of this study was to classify fungal pneumonia, bacterial pneumonia, and lipoid pneumonia based on texture characteristics and the MLP method using machine learning WEKA. The method in this study has three stages including pre-processing, extraction of texture features consisting of Histogram and GLCM, and classification using the MLP (Multi Layer Perceptron) method. The results of the texture feature extraction showed that the three types of pneumonia were: lipoid pneumonia with brightness, sharp contrast & random distribution on correlation characteristics, bacterial pneumonia with high brightness, high contrast & random distribution on energy characteristics, and fungal pneumonia with brightness, sharp contrast, & random distribution of homogeneity attributes. The third similarity of pneumonia is in the gray level that collects each other in the middle. The method used in this study resulted in the same accuracy, sensitivity, and specificity, namely 100%. The image classification in this study shows the success of the texture features and the MLP method in classifying pneumonia images accurately so that they can be used as additional tools that make it easier for medical experts.
©2020 JNSMR UIN Walisongo. All rights reserved.
Downloads
References
Adi, Kusworo, and Edi Widodo. 2016. “Analisis Citra Ct Scan Kanker Paru Berdasarkan Ciri Tekstur Gray Level Co-Occurrence Matrix Dan Ciri Morfologi Menggunakan Jaringan Syaraf Tiruan Propagasi Balik.” Youngster Physics Journal 5(4): 417–24.
Alfiani,D.dkk. 2011. Klasifikasi Tekstur Parket Kayu dengan Menggunakan Metode Statistikal Grey Level Run Length Matrix. Jurnal Teknologi Infonnasi Politeknik Telkom 01 (01):09-15.
Agussationo, Yudhi, Indah Soesanti, and Warsun Najib. 2018. “Klasifikasi Citra X-Ray Diagnosis Tuberkulosis Berbasis Fitur Statistis.” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) 2(3): 736–45.
Carreira, J. dan Sminchisesce, C.,2012, CPMC: Automatic Object Segmentation Using Constrained Parametric Min-Cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence.
Chouhan, Vikash et al. 2020. “A Novel Transfer Learning Based Approach for Pneumonia Detection in Chest X-Ray Images.” Applied Sciences (Switzerland) 10(2).
Ermawati, Eli. 2020. “Klasifikasi Nodul Payudara Berdasarkan Ciri Tekstur Pada Citra Ultrasonografi Menggunakan Scilab.” Universitas Islam Negeri Walisongo Semarang.
F. A. P. Scholastica, Asuhan Keperawatan Pada Pasien Dengan Gangguan Sistem Pernapasan. Yogyakarta : Pustaka Baru Press, pp. 14–99, 2018.
Gilani, Z.; Kwong, Y.D.; Levine, O.S.; Deloria-Knoll, M.; Scott, J.A.G.; O’Brien, K.L.; Feikin, D.R. A literature review and survey of childhood pneumonia etiology studies: 2000–2010. Clin. Infect. Dis. 2012, 54 (Suppl. 2), S102–S108.
G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A. Van Der Laak, B. Van Ginneken, and C. I. Sanchez, ´ “A survey on deep learning in medical image analysis,” Medical image analysis, vol. 42, pp. 60–88, 2017.
Khusna, D.A. 2016. Klasifikasi Lesi Citra Ultrasonografi Payudara Berdasarkan Karakteristik Tepi. Tesis. Yogyakarta : Program Pascasarjana Universitas Gadjah Mada.
Maysanjaya, I Md. Dendi. 2020. “Klasifikasi Pneumonia Pada Citra X-Rays Paru-Paru Dengan Convolutional Neural Network.” Jurnal Nasional Teknik Elektro dan Teknologi Informasi 9(2): 190–95.
Nugroho, A. 2015. Klaaasifikasi Nodul Tiroid Berbasis Ciri Tekstur pada Citra Ultrasonografi. Tesis. Yogyakarta : Program Pascasarjana Universitas Gadjah Mada
Yogyakarta.
Noor, Norliza Mohd, Omar Mohd Rijal, Ashari Yunus, and S. A.R. Abu-Bakar. 2010. “A Discrimination Method for the Detection of Pneumonia Using Chest Radiograph.” Computerized Medical Imaging and Graphics 34(2): 160–66.
Rahmadewi, Reni et al. 2013. “Metode Segmentasi Canny Pada Citra Rontgen Untuk Klasifikasi Penyakit Paru.” Jurnal Nasional Teknik Elektro 1(2): 140–45. http://jti.respati.ac.id/index.php/jurnaljti/article/viewFile/1/1.
Ramdhan, Alfiana. 2016. “Klasifikasi Citra Rontgen Paru-Paru Dengan Ekstraksi Fitur Histogram Dan Metode Naive Bayes Classifier, S1.” 3(1): 1–41.
Roberts, James, Yazeed Alwelaie, Gabriela Oprea-Ilies, and Eric Flenaugh. 2020. “Lipoid Pneumonia: A Rare Case.” Chest 158(4): A2511. https://doi.org/10.1016/j.chest.2020.09.112.
Rosita, Yesy Diah et al. “Penerapan Metode Multilayer Perceptron (Backpropagation) Dalam Penentuan Kesiapan Calon Transmigran.”
Sharma, Harsh, Jai Sethia Jain, Priti Bansal, and Sumit Gupta. 2020. “Feature Extraction and Classification of Chest X-Ray Images Using CNN to Detect Pneumonia.” Proceedings of the Confluence 2020 - 10th International Conference on Cloud Computing, Data Science and Engineering: 227–31.
Subbulakshmi, C. V., S. N. Deepa, and N. Malathi. 2012. “Comparative Analysis of XLMiner and WEKA for Pattern Classification.” Proceedings of 2012 IEEE International Conference on Advanced Communication Control and Computing Technologies, ICACCCT 2012 (978): 453–57.
Wahyuni, Sri. 2015. “Penentuan Kondisi Tulang Femur Menggunakan Analisis Tekstur Pada Citra Digital.” Elkawnie 1(2): 173–90.
Wati, Risha Ambar, Hafiz Irsyad, and M Ezar Al Rivan. 2020. “Klasifikasi Pneumonia Menggunakan Metode Support Vector Machine.” Jurnal Algoritme 1(1): 21–32.
Witten, I.H., dkk. 2011. Data Mining Practical Machine Learning Tools and Techniques. Third Edition. USA: Morgan Kaufmann.
Y. Dong, Y. Pan, J. Zhang, dan W. Xu, “Learning to Read Chest X-Ray Images from 16000+ Examples Using CNN,” 2017 IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE), 2017, hal. 51-57.
Zhang, Jianpeng et al. 2021. “Viral Pneumonia Screening on Chest X-Rays Using Confidence-Aware Anomaly Detection.” IEEE Transactions on Medical Imaging 40(3): 879–90.
Downloads
Published
Issue
Section
License
Copyright
The copyright of the received article shall be assigned to the publisher of the journal. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to published articles. Authors are allowed to use their articles for any legal purposes deemed necessary without written permission from the journal, but with an acknowledgment to this journal of initial publication.
Licensing