Early detection model of Parkinson's Disease using Random Forest Method on voice frequency data

Authors

  • Nurul Rifqah Fahira Universitas Hasanuddin, Indonesia
  • Armin Lawi Hasanuddin University, Indonesia
  • Masjidil Aqsha Hasanuddin University, Indonesia

DOI:

https://doi.org/10.21580/jnsmr.2023.9.1.13148

Keywords:

Parkinson’s Diseases, Voice Frequency, Bioinformatics, Machine Learning, Random Forest.

Abstract

Parkinson's disease is the most common nervous system disease that affects all ethnicities, genders, and ages, with a higher prevalence in the elderly and men. Developing countries tend to have higher cases of Parkinson's. The prevalence of death due to Parkinson's in Indonesia reaches the fifth highest cases in Asia and 12th in the world. This neurodegenerative disease affects a person's ability to control movement. Currently, the diagnosis of Parkinson's disease is only based on observation of motor symptoms. Therefore, early detection of the disease cannot be done. His paper proposes an efficient way to detect Parkinson's disease symptoms by comparing the fundamental frequencies of patients' voices using the random forest method. Random forest is a Machine Learning method that applies the ensemble concept, which aims to improve the performance of the classification by combining several decision trees as a basis. Random forests have shown superior algorithm performance in numerous health studies. In this study, the dataset consisted of 20 patients with Parkinson's and 20 normal patients. Data for each patient was taken from 26 types of voice records, and thus, the total data was 1,040 observations. The obtained data is prepared by filtering and rescaling. Then, the data is split and modelled using the Random Forest Method. The random forest model obtained accuracy results of 72.50%, precision (normal) of 72.28%, precision (Parkinson's) of 72.73%, sensitivity (normal) of 73.00%, sensitivity (Parkinson's) of 72.00% and AUC is 80.70%. The built random forest model is quite good at Parkinson's disease detection.

Downloads

Download data is not yet available.

Author Biographies

Nurul Rifqah Fahira, Universitas Hasanuddin

Department of Biology

Armin Lawi, Hasanuddin University

Information Systems Study Program, Department of Mathematics

Masjidil Aqsha, Hasanuddin University

Department of Statistics

References

Akbar, F., & Rahmaddeni. (2022). Komparasi Algoritma Machine Learning Untuk Memprediksi Penyakit Alzheimer. Jurnal Komputer Terapan, 8(2), 236–245.

Alhabib, I., Faqih, A., & Dikananda, F. (2022). Komparasi Metode Deep Learning, Naïve Bayes Dan Random Forest Untuk Prediksi Penyakit Jantung. INFORMATICS FOR EDUCATORS AND PROFESSIONAL: Journal of Informatics, 6(2), 176–185. https://doi.org/10.51211/itbi.v6i2.1881

Astuti, Widya, L., Yulianti, E., & Dharmayanti, D. (2022). Feature Selection Menggunakan Binary Wheal Optimizaton Algorithm (Bwoa) Pada Klasifikasi Penyakit Diabetes. Jurnal Ilmiah Informatika Global, 13(1), 5–12.

Dahlan, M. S. (2009). Penelitian Diagnostik. Jakarta: Salemba Medika.

Dorsey, E. R., & Bloem, B. R. (2018). The Parkinson Pandemic—A Call to Action. JAMA Neurology, 75(1), 9–10. https://doi.org/10.1001/jamaneurol.2017.3299

Faid, M., Jasri, M., & Rahmawati, T. (2019). Perbandingan Kinerja Tool Data Mining Weka dan Rapidminer Dalam Algoritma Klasifikasi. Teknika, 8(1), 11-16. https://doi.org/10.34148/teknika.v8i1.95

Fauzi, A., Supriyadi, R., & Maulidah, N. (2020). Deteksi Penyakit Kanker Payudara dengan Seleksi Fitur berbasis Principal Component Analysis dan Random Forest. Jurnal Infortech, 2(1), 96-101. https://doi.org/10.31294/infortech.v2i1.8079

Hadiprakoso, R. B., Aditya, W. R., & Pramitha, F. N. (2022). Analisis Statis Deteksi Malware Android Menggunakan Algoritma Supervised Machine Learning. Cyber Security Dan Forensik Digital, 5(1), 1-5. https://doi.org/10.14421/csecurity.2022.5.1.3116

Hastuti, K. (2012). Analisis Komparasi Algoritma Klasifikasi Data Mining Untuk Prediksi Mahasiswa Non Aktif. Semantik, 2(1), 241-249.

Janssens, A. C. J. W., & Martens, F. K. (2020). Reflection on modern methods: Revisiting the area under the ROC Curve. International Journal of Epidemiology, 49(4), 1397–1403. https://doi.org/10.1093/ije/dyz274

László, K., & Ghous, H. (2020). Efficiency comparison of Python and RapidMiner. Multidiszciplináris Tudományok, 10(3), 212-220. https://doi.org/10.35925/j.multi.2020.3.26

Lestari, D. T., Harahap, H. S., Sahidu, M. G., Putri, S. A., Gunawan, S. E., Susilowati, N. A., & Hunaifi, I. (2022). Edukasi Deteksi Dini Penyakit Parkinson Pada Kader Puskesmas Dalam Rangka Hari Parkinson Sedunia. Jurnal Abdi Insani, 9(3), 1012-1018. https://doi.org/10.29303/abdiinsani.v9i3.714

Mallet, N., Delgado, L., Chazalon, M., Miguelez, C., & Baufreton, J. (2019). Cellular and Synaptic Dysfunctions in Parkinson’s Disease: Stepping Out of the Striatum. Cells, 8(9), 1-29. https://doi.org/10.3390/cells8091005

Mantri, S., Morley, J. F., & Siderowf, A. D. (2019). The importance of preclinical diagnostics in Parkinson disease. Parkinsonism & Related Disorders, 64, 20–28. https://doi.org/10.1016/j.parkreldis.2018.09.011

Maskoen, T. T., Masthura, A., & Suwarman. (2017). Nilai Area Under Curve dan Akurasi Neutrophil Gelatinase Associated Lipocalin untuk Diagnosis Acute Kidney Injury pada Pasien

Politrauma di Instalasi Gawat Darurat RSUP dr. Hasan Sadikin Bandung. Anestesia dan Critical Care, 35(3), 158-164.

Probst, P., & Boulesteix, A.-L. (2018). To Tune or Not to Tune the Number of Trees in Random Forest. Journal of Machine Learning Research, 18, 1–18.

Pyatha, S., Kim, H., Lee, D., & Kim, K. (2022). Association between Heavy Metal Exposure and Parkinson’s Disease: A Review of the Mechanisms Related to Oxidative Stress. Antioxidants, 11(2467), 1-18

Pynam, V., Spanadna, R., & Srikanth, K. (2018). An Extensive Study of Data Analysis Tools (Rapid Miner, Weka, R Tool, Knime, Orange). International Journal of Computer Science and Engineering, 5(9), 4–11. https://doi.org/10.14445/23488387/IJCSE-V5I9P102

Sakar, B. E., Issenkul, M. E., Sakar, C. O., Sertbas, A., Gurgen, F., Delil, S., Apaydin, H., & Kursun, O. (2013). Collection and Analysis of a Parkinson Speech Dataset with Multiple Types of Sound Recordings. IEEE Journal of Biomedical and Health Informatics, 17(4), 828–834. https://doi.org/10.1109/JBHI.2013.2245674

Schiess, N., Cataldi, R., Okun, M. S., Fothergill-Misbah, N., Dorsey, E. R., Bloem, B. R., Barretto, M., Bhidayasiri, R., Brown, R., Chishimba, L., Chowdhary, N., Coslov, M., Cubo, E., Di Rocco, A., Dolhun, R., Dowrick, C., Fung, V. S. C., Gershanik, O. S., Gifford, L., … Dua, T. (2022). Six Action Steps to Address Global Disparities in Parkinson Disease: A World Health Organization Priority. JAMA Neurology, 79(9), 929–936. https://doi.org/10.1001/jamaneurol.2022.1783

Solana-Lavalle, G., Galán-Hernández, J.-C., & Rosas-Romero, R. (2020). Automatic Parkinson disease detection at early stages as a pre-diagnosis tool by using classifiers and a small set of vocal features. Biocybernetics and Biomedical Engineering, 40(1), 505–516. https://doi.org/10.1016/j.bbe.2020.01.003

Speiser, J. L., Miller, M. E., Tooze, J., & Ip, E. (2019). A comparison of random forest variable selection methods for classification prediction modeling. Expert Systems with Applications, 134, 93–101. https://doi.org/10.1016/j.eswa.2019.05.028

Suphinnapong, P., Phokaewvarangkul, O., Thubthong, N., Teeramongkonrasmee, A., Mahattanasakul, P., Lorwattanapongsa, P., & Bhidayasiri, R. (2021). Objective vowel sound characteristics and their relationship with motor dysfunction in Asian Parkinson’s disease patients. Journal of the Neurological Sciences, 426, 1-8.. https://doi.org/10.1016/j.jns.2021.117487

Triyono, A., Trianto, R. B., & Arum, D. M. P. (2021). Early Detection Of Diabetes Mellitus Using Random Forest Algorithm. Julia: Jurnal Ilmu Komputer An Nuur, 1(1), 25–31.

Wikandikta, I. P. G., Samatra, D. P. G. P., & Meidiary, A. A. A. (2020). Prevalensi gangguan tidur pada penderita parkinson di Poli Saraf RSUD Wangaya Denpasar tahun 2017. Intisari Sains Medis, 11(3), 1085-1090. https://doi.org/10.15562/ism.v11i3.232

WHO. (2022). Parkinson disease: a public health approach: technical brief.

Yuliati, I. F., & Sihombing, P. R. (2021). Penerapan Metode Machine Learning dalam Klasifikasi Risiko Kejadian Berat Badan Lahir Rendah di Indonesia. MATRIK : Jurnal Manajemen, Teknik Informatika Dan Rekayasa Komputer, 20(2), 417–426. https://doi.org/10.30812/matrik.v20i2.1174

Zitnik, M., Nguyen, F., Wang, B., Leskovec, J., Goldenberg, A., & Hoffman, M. M. (2019). Machine learning for integrating data in biology and medicine: Principles, practice, and opportunities. Information Fusion, 50, 71–91. https://doi.org/10.1016/j.inffus.2018.09.012

Zulfahmi, I., Syahputra, H., Naibaho, S. I., Maulana, M. A., & Sinaga, E. P. (2023). Perbandingan Algoritma Support Vector Machine (SVM) dan Decision Tree Untuk Deteksi Tingkat Depresi Mahasiswa. BINA INSANI

Downloads

Published

2023-12-13

Issue

Section

Original Research Articles