Scalar fields as dark matter candidates in the modified left-right symmetry model
DOI:
https://doi.org/10.21580/jnsmr.2023.9.1.17481Keywords:
left-right symmetry, standard model, dark matter, particle physics, Scalar fieldAbstract
Dark matter is about 25% of the universe, but its existence is still a mystery. The Modified Left-Right Symmetry Model with the extension of the scalar field, is expected to explain dark matter candidate. The dark matter candidates were analyzed using the Higgs Potential and Lagrangian Yukawa to obtain information on decay and scattering interactions. The generation of dark matter can be determined by analyzing the temperature evolution of the universe, which is divided into three stages post-inflation reheating, symmetry breaking first step, and symmetry breaking second step. The analysis results show that the right-sector scalar field can be Cold Dark Matter (CDM) candidate because it has non-relativistic characteristics, is stable, does not interact with fermions, and has an abundance of 0.004. The right-sector atom can also be a CDM candidate because it has non-relativistic characteristics, is neutral, and consists of the right nucleons and right electrons. The singlet scalar field can be the Warm Dark Matter (WDM) candidate because it can decay into fermion, interact in the left and right sectors, is neutrally charged and does not interact with other particles electromagnetically and has an abundance of 0.003. Thus, based on the modified left-right symmetry model, the particle that can be a candidate for dark matter is the scalar field.Downloads
References
Agudelo Ruiz, J. A. (2021). Scalar field theory for warm dark matter. European Physical Journal Plus, 136(1). https://doi.org/10.1140/epjp/s13360-020-00962-z
Bœhm, C., Chu, X., Kuo, J. L., & Pradler, J. (2021). Scalar dark matter candidates revisited. Physical Review D, 103(7), 1–22. https://doi.org/10.1103/PhysRevD.103.075005
Choi, G., Yanagida, T. T., & Yokozaki, N. (2021). Dark Photon Dark Matter in The Minimal B-L Model. Journal of High Energy Physics. https://doi.org/https://doi.org/10.1007/JHEP01(2021)057
Collins, P. D. B., Martin, A. D., & Squaires, E. J. (1989). Particle Physics and Cosmology. John Willey & Sons.
Dutta, B., Mimura, Y., & Mohapatra, R. N. (2010). An SO(10) grand unified theory of flavor. Journal of High Energy Physics, 34. https://doi.org/https://doi.org/10.1007/JHEP05(2010)034
Foot, R. (2014). Mirror dark matter: Cosmology, galaxy structure and direct. International Journal of Modern Physics A, 29(11–12). https://doi.org/10.1142/S0217751X14300130
Griffiths, D. (2008). Introduction to Elemntary Particles (Second, Re). WILEY-VCH Verlag GmbH & Co. KGaA.
Guzmán, F. S., & Matos, T. (2000). Scalar fields as dark matter in spiral galaxies. Classical and Quantum Gravity, 17(1). https://doi.org/10.1088/0264-9381/17/1/102
Haniah, S. R., Istikomah, Khalif, M. A., & Kusuma, H. H. (2020). Scalar Field Mass Generation in the Gauge Theory SU(2)XU(1)XZ2. Journal of Physics: Conference Series. https://doi.org/10.1088/1742-6596/1539/1/012005 Scalar
Hara, T., Kanemura, S., & Katayose, T. (2022). Is light thermal scalar dark matter possible? Physical Review D, 105(3), 35035. https://doi.org/10.1103/PhysRevD.105.035035
Hariwangsa, A., & Satriawan, M. (2016). Massa Leptoquark Perantara Peluruhan Proton Dalam Model Korespondensi Spinor-Skalar. Jurnal Penelitian, 20(1), 10–15. https://e-journal.usd.ac.id/index.php/JP/article/view/848
Huitu, K. (2020). A minimal supersymmetric left-right model, dark matter and signals at the LHC. The European Physical Journal Special Topic. https://doi.org/https://doi.org/10.1140/epjst/e2020-000039-9
Istikomah. (2015). Kendala Big Bang Nucleosynthesis Pada model Cermin Termodifikasi. Universitas Gadjah Mada.
Istikomah. (2020). Pembangkitan Massa Medan Skalar dan Boson Tera pada Model Simetri Kiri Kanan Termodifikasi Berdasarkan Grup Tera SU(3)⊗SU(2)_L⊗SU(2)_R⊗U(1)_Y. Jurnal Fisika, 10(2), 35–41. https://doi.org/https://doi.org/10.15294/jf.v10i2.25589
Kolb, E. W., & Turner, M. S. (1990). The Early Universe. Addison-Wesley Publishing Company.
Lebedev, O., Lee, H. M., & Mambrini, Y. (2012). Vector Higgs portal dark matter and the invisible Higgs. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 707(5), 570–576. https://doi.org/10.1016/j.physletb.2012.01.029
Levy, M., Rosa, J. G., & Ventura, L. B. (2021). Warm inflation, neutrinos and dark matter: a minimal extension of the Standard Model. Journal of High Energy Physics, 2021(12). https://doi.org/10.1007/JHEP12(2021)176
Luminet, J. (2002). The dark matter Enigma. 1–11. https://doi.org/10.1201/9781420034516.ch4
Majumdar, D. (2015). Dark Matter An introduction. Taylor & Francis Group, LLC.
Matos, T., Guzmán, F. S., & Ureña-López, L. A. (2000). Scalar field as dark matter in the universe. Classical and Quantum Gravity, 17(7), 1707–1712. https://doi.org/10.1088/0264-9381/17/7/309
Rubakov, V. A., & Gorbunov, D., S. (2011). Introduction to The Theory Of The Early Universe Hot Big Bang Theory. World Scientific.
Satriawan, M. (2018). A Multicomponent Dark Matter in a Model with Mirror Symmetry with Additional Charged Scalars. 1, 1–9. https://doi.org/https://doi.org/10.48550/arXiv.1801.00326
Setyadi, C., & Satriawan, M. (2014). Kandidat Materi Gelap Dalam Model Cermin Baru. Universitas Gadjah Mada.
Simon, J. D., & Geha, M. (2021). Illuminating the darkest galaxies. In Physics Today (Vol. 74, Issue 11, pp. 30–36). American Institute of Physics. https://doi.org/10.1063/PT.3.4879
Tenkanen, T. (2019). Dark Matter from Scalar Field Fluctuations. Physical Review Letters, 123(6), 1–5. https://doi.org/10.1103/PhysRevLett.123.061302
The ATLAS Collaborations. (2013). Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. 716(May), 1–29. https://doi.org/10.1016/j.physletb.2012.08.020
Vilenkin, A. (1999). Noninteracting dark matter. Physical Review D - Particles, Fields, Gravitation and Cosmology, 60(10), 1–26. https://doi.org/10.1103/PhysRevD.60.103506
Downloads
Published
Issue
Section
License
Copyright
The copyright of the received article shall be assigned to the publisher of the journal. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to published articles. Authors are allowed to use their articles for any legal purposes deemed necessary without written permission from the journal, but with an acknowledgment to this journal of initial publication.
Licensing