Scalar fields as dark matter candidates in the modified left-right symmetry model

Authors

  • Istikomah Istikomah Universitas Islam Negeri Walisongo Semarang, Indonesia
  • Nurul Embun Isnawati Universitas Islam Negeri Walisongo Semarang, Indonesia

DOI:

https://doi.org/10.21580/jnsmr.2023.9.1.17481

Keywords:

left-right symmetry, standard model, dark matter, particle physics, Scalar field

Abstract

Dark matter is about 25% of the universe, but its existence is still a mystery. The Modified Left-Right Symmetry Model with the extension of the scalar field, is expected to explain dark matter candidate. The dark matter candidates were analyzed using the Higgs Potential and Lagrangian Yukawa to obtain information on decay and scattering interactions. The generation of dark matter can be determined by analyzing the temperature evolution of the universe, which is divided into three stages post-inflation reheating, symmetry breaking first step, and symmetry breaking second step. The analysis results show that the right-sector scalar field  can be Cold Dark Matter (CDM) candidate because it has non-relativistic characteristics, is stable, does not interact with fermions, and has an abundance of 0.004. The right-sector atom can also be a CDM candidate because it has non-relativistic characteristics, is neutral, and consists of the right nucleons and right electrons. The singlet scalar field  can be the Warm Dark Matter (WDM) candidate because it can decay into fermion, interact in the left and right sectors, is neutrally charged and does not interact with other particles electromagnetically and has an abundance of 0.003. Thus, based on the modified left-right symmetry model, the particle that can be a candidate for dark matter is the scalar field.

Downloads

Download data is not yet available.

Author Biography

Istikomah Istikomah, Universitas Islam Negeri Walisongo Semarang

Physics Departement

References

Agudelo Ruiz, J. A. (2021). Scalar field theory for warm dark matter. European Physical Journal Plus, 136(1). https://doi.org/10.1140/epjp/s13360-020-00962-z

Bœhm, C., Chu, X., Kuo, J. L., & Pradler, J. (2021). Scalar dark matter candidates revisited. Physical Review D, 103(7), 1–22. https://doi.org/10.1103/PhysRevD.103.075005

Choi, G., Yanagida, T. T., & Yokozaki, N. (2021). Dark Photon Dark Matter in The Minimal B-L Model. Journal of High Energy Physics. https://doi.org/https://doi.org/10.1007/JHEP01(2021)057

Collins, P. D. B., Martin, A. D., & Squaires, E. J. (1989). Particle Physics and Cosmology. John Willey & Sons.

Dutta, B., Mimura, Y., & Mohapatra, R. N. (2010). An SO(10) grand unified theory of flavor. Journal of High Energy Physics, 34. https://doi.org/https://doi.org/10.1007/JHEP05(2010)034

Foot, R. (2014). Mirror dark matter: Cosmology, galaxy structure and direct. International Journal of Modern Physics A, 29(11–12). https://doi.org/10.1142/S0217751X14300130

Griffiths, D. (2008). Introduction to Elemntary Particles (Second, Re). WILEY-VCH Verlag GmbH & Co. KGaA.

Guzmán, F. S., & Matos, T. (2000). Scalar fields as dark matter in spiral galaxies. Classical and Quantum Gravity, 17(1). https://doi.org/10.1088/0264-9381/17/1/102

Haniah, S. R., Istikomah, Khalif, M. A., & Kusuma, H. H. (2020). Scalar Field Mass Generation in the Gauge Theory SU(2)XU(1)XZ2. Journal of Physics: Conference Series. https://doi.org/10.1088/1742-6596/1539/1/012005 Scalar

Hara, T., Kanemura, S., & Katayose, T. (2022). Is light thermal scalar dark matter possible? Physical Review D, 105(3), 35035. https://doi.org/10.1103/PhysRevD.105.035035

Hariwangsa, A., & Satriawan, M. (2016). Massa Leptoquark Perantara Peluruhan Proton Dalam Model Korespondensi Spinor-Skalar. Jurnal Penelitian, 20(1), 10–15. https://e-journal.usd.ac.id/index.php/JP/article/view/848

Huitu, K. (2020). A minimal supersymmetric left-right model, dark matter and signals at the LHC. The European Physical Journal Special Topic. https://doi.org/https://doi.org/10.1140/epjst/e2020-000039-9

Istikomah. (2015). Kendala Big Bang Nucleosynthesis Pada model Cermin Termodifikasi. Universitas Gadjah Mada.

Istikomah. (2020). Pembangkitan Massa Medan Skalar dan Boson Tera pada Model Simetri Kiri Kanan Termodifikasi Berdasarkan Grup Tera SU(3)⊗SU(2)_L⊗SU(2)_R⊗U(1)_Y. Jurnal Fisika, 10(2), 35–41. https://doi.org/https://doi.org/10.15294/jf.v10i2.25589

Kolb, E. W., & Turner, M. S. (1990). The Early Universe. Addison-Wesley Publishing Company.

Lebedev, O., Lee, H. M., & Mambrini, Y. (2012). Vector Higgs portal dark matter and the invisible Higgs. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 707(5), 570–576. https://doi.org/10.1016/j.physletb.2012.01.029

Levy, M., Rosa, J. G., & Ventura, L. B. (2021). Warm inflation, neutrinos and dark matter: a minimal extension of the Standard Model. Journal of High Energy Physics, 2021(12). https://doi.org/10.1007/JHEP12(2021)176

Luminet, J. (2002). The dark matter Enigma. 1–11. https://doi.org/10.1201/9781420034516.ch4

Majumdar, D. (2015). Dark Matter An introduction. Taylor & Francis Group, LLC.

Matos, T., Guzmán, F. S., & Ureña-López, L. A. (2000). Scalar field as dark matter in the universe. Classical and Quantum Gravity, 17(7), 1707–1712. https://doi.org/10.1088/0264-9381/17/7/309

Rubakov, V. A., & Gorbunov, D., S. (2011). Introduction to The Theory Of The Early Universe Hot Big Bang Theory. World Scientific.

Satriawan, M. (2018). A Multicomponent Dark Matter in a Model with Mirror Symmetry with Additional Charged Scalars. 1, 1–9. https://doi.org/https://doi.org/10.48550/arXiv.1801.00326

Setyadi, C., & Satriawan, M. (2014). Kandidat Materi Gelap Dalam Model Cermin Baru. Universitas Gadjah Mada.

Simon, J. D., & Geha, M. (2021). Illuminating the darkest galaxies. In Physics Today (Vol. 74, Issue 11, pp. 30–36). American Institute of Physics. https://doi.org/10.1063/PT.3.4879

Tenkanen, T. (2019). Dark Matter from Scalar Field Fluctuations. Physical Review Letters, 123(6), 1–5. https://doi.org/10.1103/PhysRevLett.123.061302

The ATLAS Collaborations. (2013). Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. 716(May), 1–29. https://doi.org/10.1016/j.physletb.2012.08.020

Vilenkin, A. (1999). Noninteracting dark matter. Physical Review D - Particles, Fields, Gravitation and Cosmology, 60(10), 1–26. https://doi.org/10.1103/PhysRevD.60.103506

Downloads

Published

2023-06-15

Issue

Section

Original Research Articles