Classification of types A and A_+ from low dimensional standard and non-standard filiform Lie Algebras
DOI:
https://doi.org/10.21580/jnsmr.2023.9.2.18083Keywords:
Types A and A_ , Filiform Lie algebras, Heisenberg Lie algebras.Abstract
In this paper, we study low-dimensional Filiform Lie algebras. Specifically, three-dimensional standard Filiform Lie algebras and five-dimensional non-standard Filiform Lie algebras. The classification method was given in the following stage. For given a low-dimensional Filiform Lie algebra, we compute its second centre. We showed that three-dimensional Filiform Lie algebra-called Heisenberg Lie algebra-is type ???? and ????+ as well. On the other hand, for ????≥3, the standard Filiform Lie algebras are type ???? but not type ????+. In this case, we give a concrete example of case five-dimensional Heisenberg Lie algebra. Moreover, we proved that five-dimensional non-standard Filiform Lie algebra is type ???? but not type ????+. It is still an open problem to classify types ???? and ????+ for the general case of non-standard Filiform Lie algebra of dimension ≥6.
Downloads
References
Adimi, H., & Makhlouf, A. (2013). Index of graded filiform and quasi filiform Lie algebras. Filomat, 27(3), 467–483. https://doi.org/10.2298/FIL1303467A
Alvarez, M. A., Rodríguez-Vallarte, M. C., & Salgado, G. (2018a). Contact and Frobenius solvable Lie algebras with abelian nilradical. Communications in Algebra, 46(10), 4344–4354. https://doi.org/10.1080/00927872.2018.1439048
Alvarez, M. A., Rodríguez-Vallarte, M. C., & Salgado, G. (2018b). Contact and Frobenius solvable Lie algebras with abelian nilradical. Communications in Algebra, 46(10), 4344–4354.
https://doi.org/10.1080/00927872.2018.1439048
Alvarez, M. A., Rodríguez-Vallarte, M., & Salgado, G. (2016). Contact nilpotent Lie algebras. Proceedings of the American Mathematical Society, 145(4), 1467–1474. https://doi.org/10.1090/proc/13341
Ayala, V., Kizil, E., & de Azevedo Tribuzy, I. (2012). On an algorithm for finding derivations of Lie algebras. Proyecciones (Antofagasta), 31(1), 81–90. https://doi.org/10.4067/S0716-09172012000100008
Beltiţă, I., & Beltiţă, D. (2015). On Kirillov’s lemma for nilpotent Lie algebras. Journal of Algebra, 427, 85–103.. https://doi.org/10.1016/j.jalgebra.2014.12.026
Csikós, B., & Verhóczki, L. (2007). Classification of Frobenius Lie algebras of dimension $leq 6$. Publicationes Mathematicae Debrecen, 70(3–4),427–451.https://doi.org/10.5486/PMD.2007.3556
de Graaf, W. A. (2007). Classification of 6-dimensional nilpotent Lie algebras over fields of characteristic not 2. Journal of Algebra, 309(2), 640–653. https://doi.org/10.1016/j.jalgebra.2006.08.006
de Jesus, V. L., & Schneider, C. (2023). The center and invariants of standard filiform Lie algebras. Journal of Algebra, 628, 584–612. https://doi.org/10.1016/j.jalgebra.2023.04.002
Diatta, A., & Manga, B. (2014). On Properties of Principal Elements of Frobenius Lie Algebras . Journal of Lie Theory, 24(3), 849–864.
Diatta, A., Manga, B., & Mbaye, A. (2020). On systems of commuting matrices, Frobenius Lie algebras and Gerstenhaber’s Theorem. http://arxiv.org/abs/2002.08737
Falcón, Ó. J., Falcón, R. M., Núñez, J., Pacheco, A. M., & Villar, M. T. (2016). Classification of Filiform Lie Algebras up to dimension 7 Over Finite Fields. Analele Universitatii “Ovidius” Constanta - Seria Matematica, 24(2), 185–204. https://doi.org/10.1515/auom-2016-0036
Gerstenhaber, M., & Giaquinto, A. (2009). The Principal Element of a Frobenius Lie Algebra. Letters in Mathematical Physics, 88(1–3), 333–341. https://doi.org/10.1007/s11005-009-0321-8
Gómez, J. R., Jimenéz-Merchán, A., & Khakimdjanov, Y. (1998). Low-dimensional filiform Lie algebras. Journal of Pure and Applied Algebra,
(2), 133–158. https://doi.org/10.1016/S0022-4049(97)00096-0
Henti, H., Kurniadi, E., & Carnia, E. (2021). Quasi-Associative Algebras on the Frobenius Lie Algebra M_3 (R)⊕gl_3 (R). Al-Jabar : Jurnal Pendidikan Matematika, 12(1), 59–69. https://doi.org/10.24042/ajpm.v12i1.8485
Kirillov, A. A. (1962). Unitary Representations Of Nilpotent Lie Groups. Russian Mathematical Surveys, 17(4), 53–104. https://doi.org/10.1070/RM1962v017n04ABEH004118
Kruglikov, B. (1997). Symplectic and contact Lie algebras with an application to Monge-Ampére equations.
Kurniadi, E., Carnia, E., & Supriatna, A. K. (2021). The construction of real Frobenius Lie algebras from non-commutative nilpotent Lie algebras of dimension. Journal of Physics: Conference Series, 1722(1), 012025. https://doi.org/10.1088/1742-6596/1722/1/012025
Ooms, A. I. (2009). Computing invariants and semi-invariants by means of Frobenius Lie algebras. Journal of Algebra, 321(4), 1293–1312. https://doi.org/10.1016/j.jalgebra.2008.10.026
Pham, D. N. (2016). $mathfrak{g}$-quasi-Frobenius Lie algebras. Archivum Mathematicum, 4, 233–262. https://doi.org/10.5817/AM2016-4-233
Rodríguez-Vallarte, M. C., & Salgado, G. (2016). 5-dimensional indecomposable contact Lie algebras as double extensions. Journal of Geometry and Physics, 100, 20–32.
https://doi.org/10.1016/j.geomphys.2015.10.014
Salgado-González, G. (2019). Invariants of contact Lie algebras. Journal of Geometry and Physics, 144, 388–396. https://doi.org/10.1016/j.geomphys.2019.06.014
Downloads
Published
Issue
Section
License
Copyright
The copyright of the received article shall be assigned to the publisher of the journal. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to published articles. Authors are allowed to use their articles for any legal purposes deemed necessary without written permission from the journal, but with an acknowledgment to this journal of initial publication.
Licensing