Classification of types A and A_+ from low dimensional standard and non-standard filiform Lie Algebras

Edi Kurniadi*  -  Department of Mathematics FMIPA Universitas Padjadjaran, Indonesia
Kankan Parmikanti  -  Department of Mathematics FMIPA Universitas Padjadjaran, Indonesia
Badrulfalah Badrulfalah  -  Department of Mathematics FMIPA Universitas Padjadjaran, Indonesia

(*) Corresponding Author

In this paper, we study low-dimensional Filiform Lie algebras. Specifically, three-dimensional standard Filiform Lie algebras and five-dimensional non-standard Filiform Lie algebras. The classification method was given in the following stage. For given a low-dimensional Filiform Lie algebra, we compute its second centre. We showed that three-dimensional Filiform Lie algebra-called Heisenberg Lie algebra-is type 𝐴 and 𝐴+ as well. On the other hand, for 𝑛≥3, the standard Filiform Lie algebras are type 𝐴 but not type 𝐴+. In this case, we give a concrete example of case five-dimensional Heisenberg Lie algebra. Moreover, we proved that five-dimensional non-standard Filiform Lie algebra is type 𝐴 but not type 𝐴+. It is still an open problem to classify types 𝐴 and 𝐴+ for the general case of non-standard Filiform Lie algebra of dimension ≥6.

Keywords: Types A and A_+, Filiform Lie algebras, Heisenberg Lie algebras.

  1. Adimi, H., & Makhlouf, A. (2013). Index of graded filiform and quasi filiform Lie algebras. Filomat, 27(3), 467–483. https://doi.org/10.2298/FIL1303467A
  2. Alvarez, M. A., Rodríguez-Vallarte, M. C., & Salgado, G. (2018a). Contact and Frobenius solvable Lie algebras with abelian nilradical. Communications in Algebra, 46(10), 4344–4354. https://doi.org/10.1080/00927872.2018.1439048
  3. Alvarez, M. A., Rodríguez-Vallarte, M. C., & Salgado, G. (2018b). Contact and Frobenius solvable Lie algebras with abelian nilradical. Communications in Algebra, 46(10), 4344–4354.
  4. https://doi.org/10.1080/00927872.2018.1439048
  5. Alvarez, M. A., Rodríguez-Vallarte, M., & Salgado, G. (2016). Contact nilpotent Lie algebras. Proceedings of the American Mathematical Society, 145(4), 1467–1474. https://doi.org/10.1090/proc/13341
  6. Ayala, V., Kizil, E., & de Azevedo Tribuzy, I. (2012). On an algorithm for finding derivations of Lie algebras. Proyecciones (Antofagasta), 31(1), 81–90. https://doi.org/10.4067/S0716-09172012000100008
  7. Beltiţă, I., & Beltiţă, D. (2015). On Kirillov’s lemma for nilpotent Lie algebras. Journal of Algebra, 427, 85–103.. https://doi.org/10.1016/j.jalgebra.2014.12.026
  8. Csikós, B., & Verhóczki, L. (2007). Classification of Frobenius Lie algebras of dimension $leq 6$. Publicationes Mathematicae Debrecen, 70(3–4),427–451.https://doi.org/10.5486/PMD.2007.3556
  9. de Graaf, W. A. (2007). Classification of 6-dimensional nilpotent Lie algebras over fields of characteristic not 2. Journal of Algebra, 309(2), 640–653. https://doi.org/10.1016/j.jalgebra.2006.08.006
  10. de Jesus, V. L., & Schneider, C. (2023). The center and invariants of standard filiform Lie algebras. Journal of Algebra, 628, 584–612. https://doi.org/10.1016/j.jalgebra.2023.04.002
  11. Diatta, A., & Manga, B. (2014). On Properties of Principal Elements of Frobenius Lie Algebras . Journal of Lie Theory, 24(3), 849–864.
  12. Diatta, A., Manga, B., & Mbaye, A. (2020). On systems of commuting matrices, Frobenius Lie algebras and Gerstenhaber’s Theorem. http://arxiv.org/abs/2002.08737
  13. Falcón, Ó. J., Falcón, R. M., Núñez, J., Pacheco, A. M., & Villar, M. T. (2016). Classification of Filiform Lie Algebras up to dimension 7 Over Finite Fields. Analele Universitatii “Ovidius” Constanta - Seria Matematica, 24(2), 185–204. https://doi.org/10.1515/auom-2016-0036
  14. Gerstenhaber, M., & Giaquinto, A. (2009). The Principal Element of a Frobenius Lie Algebra. Letters in Mathematical Physics, 88(1–3), 333–341. https://doi.org/10.1007/s11005-009-0321-8
  15. GĂłmez, J. R., JimenĂŠz-MerchĂĄn, A., & Khakimdjanov, Y. (1998). Low-dimensional filiform Lie algebras. Journal of Pure and Applied Algebra,
  16. (2), 133–158. https://doi.org/10.1016/S0022-4049(97)00096-0
  17. Henti, H., Kurniadi, E., & Carnia, E. (2021). Quasi-Associative Algebras on the Frobenius Lie Algebra M_3 (R)⊕gl_3 (R). Al-Jabar : Jurnal Pendidikan Matematika, 12(1), 59–69. https://doi.org/10.24042/ajpm.v12i1.8485
  18. Kirillov, A. A. (1962). Unitary Representations Of Nilpotent Lie Groups. Russian Mathematical Surveys, 17(4), 53–104. https://doi.org/10.1070/RM1962v017n04ABEH004118
  19. Kruglikov, B. (1997). Symplectic and contact Lie algebras with an application to Monge-AmpĂŠre equations.
  20. Kurniadi, E., Carnia, E., & Supriatna, A. K. (2021). The construction of real Frobenius Lie algebras from non-commutative nilpotent Lie algebras of dimension. Journal of Physics: Conference Series, 1722(1), 012025. https://doi.org/10.1088/1742-6596/1722/1/012025
  21. Ooms, A. I. (2009). Computing invariants and semi-invariants by means of Frobenius Lie algebras. Journal of Algebra, 321(4), 1293–1312. https://doi.org/10.1016/j.jalgebra.2008.10.026
  22. Pham, D. N. (2016). $mathfrak{g}$-quasi-Frobenius Lie algebras. Archivum Mathematicum, 4, 233–262. https://doi.org/10.5817/AM2016-4-233
  23. Rodríguez-Vallarte, M. C., & Salgado, G. (2016). 5-dimensional indecomposable contact Lie algebras as double extensions. Journal of Geometry and Physics, 100, 20–32.
  24. https://doi.org/10.1016/j.geomphys.2015.10.014
  25. Salgado-González, G. (2019). Invariants of contact Lie algebras. Journal of Geometry and Physics, 144, 388–396. https://doi.org/10.1016/j.geomphys.2019.06.014

Open Access Copyright (c) Journal of Natural Sciences and Mathematics Research
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Journal of Natural Sciences and Mathematics Research
Published by Faculty of Science and Technology
Universitas Islam Negeri Walisongo Semarang

Jl Prof. Dr. Hamka Kampus III Ngaliyan Semarang 50185
Website: https://journal.walisongo.ac.id/index.php/JNSMR
Email:[email protected]

ISSN: 2614-6487 (Print)
ISSN: 2460-4453 (Online)

View My Stats

Lisensi Creative Commons

This work is licensed under a Creative Commons Lisensi Creative Commons .

apps