The tropical version of El Gamal Encryption

Authors

  • Any Muanalifah Universitas Islam Negeri Walisongo Semarang, Indonesia
  • Ayus Riana Isnawati Universitas Islam Negeri Walisongo Semarang, Indonesia
  • Rosalio Artes Jr. Mindanao State University, Philippines
  • Nurwan Nurwan Universitas Negeri Gorontalo, Indonesia

DOI:

https://doi.org/10.21580/jnsmr.v9i2.18704

Keywords:

tropical algebra, tropical cryptography, El Gamal Encryption

Abstract

In this paper, we consider the new version of tropical cryptography protocol, i.e the tropical version of El Gamal encryption.  We follow the ideas and modify the clasical El Gamal encryption using tropical matrices and matrix power in tropical algebra. Then we also provide a toy example for the reader’s understanding. 

Downloads

Download data is not yet available.

References

Ahmed, K., Pal, S., & Mohan, R. (2023a). A review of the tropical approach in cryptography. Cryptologia, 47(1), 63–87. https://doi.org/10.1080/01611194.2021.1994486

Ahmed, K., Pal, S., & Mohan, R. (2023b). Key exchange protocol based upon a modified tropical structure. Communications in Algebra, 51(1), 214–223. https://doi.org/10.1080/00927872.2022.2095566

Akian, M., Bapat, R., & Gaubert, S. (2013). Max-Plus Algebra, In L. Hogben, editor, Handbook of linear algebra, chapter 25. Chapman and Hall/CRC, Boca Raton, FL, 2 Edition.

Baccelli, F., Cohen, G., Olsder, G. J., & Quadrat, J.-P. (1992). Synchronization and Linearity: An Algebra for Discrete Event Systems. Wiley.

Burkard, R. E., & Butkovic, P. (2003). Max algebra and the linear assignment problem. Mathematical Programming, 98(1–3), 415–429. https://doi.org/10.1007/s10107-003-0411-9

Butkovič, P. (2010). Max-linear Systems: Theory and Algorithms. Springer London. https://doi.org/10.1007/978-1-84996-299-5

Cohen, G., Gaubert, S., & Quadrat, J.-P. (1999). Max-plus algebra and system theory: Where we are and where to go now. Annual Reviews in Control, 23, 207–219. https://doi.org/10.1016/S1367-5788(99)90091-3

Bart, D. S., & Boom, T. van den. (2008). Max-plus algebra and max-plus linear discrete event systems: An introduction “Proceedings of the 9th International Workshop on Discrete Event Systems (WODES’08).”

Durcheva, M. I., Trendafilov, I. D., & Rachev, M. (2014). Public key cryptosystem based on endomorphism semirings of a finite chain. 330–335. https://doi.org/10.1063/1.4902494

Elgamal, T. (1985). A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Transactions on Information Theory, 31(4), 469–472. https://doi.org/10.1109/TIT.1985.1057074

Elsner, L., & Driessche, P. van den. (1999). On the power method in max algebra. Linear Algebra and Its Applications, 302–303, 17–32. https://doi.org/10.1016/S0024-3795(98)10171-4

Elsner, L., & Driessche, P. van den. (2001). Modifying the power method in max algebra. Linear Algebra and Its Applications, 332–334, 3–13. https://doi.org/10.1016/S0024-3795(00)00062-8

Gaubert, S., & Plus, M. (1997). Methods and applications of (max,+) linear algebra (pp. 261–282). https://doi.org/10.1007/BFb0023465

Grigoriev, D., & Ponomarenko, I. (2005). Constructions in public-key cryptography over matrix groups.

Grigoriev, D., & Shpilrain, V. (2014). Tropical Cryptography. Communications in Algebra, 42(6), 2624–2632. https://doi.org/10.1080/00927872.2013.766827

Grigoriev, D., & Shpilrain, V. (2018). Tropical cryptography II: extensions by homomorphisms. https://doi.org/https://doi.org/10.48550

Grigoriev, D., & Shpilrain, V. (2019). Tropical cryptography II: Extensions by homomorphisms. Communications in Algebra, 47(10), 4224–4229. https://doi.org/10.1080/00927872.2019.1581213

Huang, H., Li, C., & Deng, L. (2022). Public-Key Cryptography Based on Tropical Circular Matrices. Applied Sciences, 12(15), 7401. https://doi.org/10.3390/app12157401

Isaac, S., & Kahrobaei, D. (2021). A closer look at the tropical cryptography. International Journal of Computer Mathematics: Computer Systems Theory, 6(2), 137–142. https://doi.org/10.1080/23799927.2020.1862303

Kotov, M., & Ushakov, A. (2018). Analysis of a key exchange protocol based on tropical matrix algebra. Journal of Mathematical Cryptology, 12(3), 137–141. https://doi.org/10.1515/jmc-2016-0064

Muanalifah, A., & Sergeev, S. (2020). Modifying the tropical version of Stickel’s key exchange protocol. Applications of Mathematics, 65(6), 727–753. https://doi.org/10.21136/AM.2020.0325-19

Muanalifah, A., & Sergeev, S. (2022). On the tropical discrete logarithm problem and security of a protocol based on tropical semidirect product. Communications in Algebra, 50(2), 861–879. https://doi.org/10.1080/00927872.2021.1975125

Nishida, Y. (2023). Algorithm for the CSR expansion of max-plus matrices using the characteristic polynomial. https://doi.org/https://doi.org/10.48550/arXiv.2311.03844

Rudy, D., & Monico, C. (2020). Remarks on a Tropical Key Exchange System. Journal of Mathematical Cryptology, 15(1), 280–283. https://doi.org/10.1515/jmc-2019-0061

Sergeev, S., & Schneider, H. (2012). CSR expansions of matrix powers in max algebra. Transactions of the American Mathematical Society, 364(11), 5969–5994. https://doi.org/10.1090/S0002-9947-2012-05605-4

Downloads

Published

2023-12-29

Issue

Section

Original Research Articles