Synthesis and characterization of SO42-/KCC-1 catalyst as an alternative candidate for simultaneous esterification and transesterification reactions

Ginda Putri Farikhah  -  Universitas Islam Negeri Walisongo Semarang, Indonesia
Wirda Udaibah*  -  Universitas Islam Negeri Walisongo Semarang, Indonesia
Mulyatun Mulyatun  -  Universitas Islam Negeri Walisongo Semarang, Indonesia

(*) Corresponding Author

Sulfate-impregnated acid catalysts can be used to replace conventional homogeneous base catalysts which are very dangerous, corrosive and environmentally unfriendly. Sulfate impregnation on porous support material will increase the surface area of the catalyst. The use of KCC-1 as a supporting material can produce catalysts with excellent properties. The method used in this research is the hydrothermal method for the synthesis of KCC-1 and the direct impregnation method for the synthesis of SO42-/KCC-1. Characterization of the resulting material using X-ray diffraction (XRD), FTIR spectrometer, and low temperature emission scanning electron microscope (SEM). The characterization results showed that the synthesis of KCC-1 and SO42-/KCC-1 had been successfully carried out. This is evidenced by the formation of amorphous silica, the presence of peaks of silica and sulfate groups, and scanning electron microscope images showing nano-sized materials.

©2021 JNSMR UIN Walisongo. All rights reserved.

 

Keywords: KCC-1; SO42-/KCC-1; impregnation; esterification; transesterification

  1. A. Talebian-Kiakalaieh, N. A. S. Amin, and H. Mazaheri, “A Review on Novel Processes of Biodiesel Production from Waste Cooking Oil,” Appl. Energy, vol. 104, pp. 683–710, 2013, doi: 10.1016/j.apenergy.2012.11.061.
  2. A. A. Refaat, N. K. Attia, H. A. Sibak, S. T. El Sheltawy, and G. I. ElDiwani, “Production Optimization and Quality Assessment of Biodiesel from Waste Vegetable Oil,” Int. J. Environ. Sci. Technol., vol. 5, no. 1, pp. 75–82, 2008, doi: 10.1007/BF03325999.
  3. J. Gardy et al., “A CoreSshell SO4/Mg-Al-Fe3O4 Catalyst for Biodiesel Production,” Appl. Catal. B Environ., vol. 259, p. 118093, 2019, doi: 10.1016/j.apcatb.2019.118093.
  4. D. Zuo, J. Lane, D. Culy, M. Schultz, A. Pullar, and M. Waxman, “Sulfonic Acid Functionalized Mesoporous SBA-15 Catalysts for Biodiesel Production,” Appl. Catal. B Environ., vol. 129, pp. 342–350, 2013, doi: 10.1016/j.apcatb.2012.09.029.
  5. Istadi, Teknologi Katalis untuk Konversi Energi, Edisi Pert. Yogyakarta: Graha Ilmu, 2011.
  6. M. N. Hossain, M. S. Ullah Siddik Bhuyan, A. H. Md Ashraful Alam, and Y. C. Seo, “Biodiesel from Hydrolyzed Waste Cooking Oil using A S-ZrO2/SBA-15 Super Acid Catalyst under Sub-Critical Conditions,” Energies, vol. 11, no. 2, 2018, doi: 10.3390/en11020299.
  7. M. Way and rude de I’Atome, “High Surface Area Silica Nanoparticles,” Strem Chem. Cat., vol. 1, p. 7362, 2016.
  8. K. Abdullah, “Fibrous Silica Nanospheres (KCC-1),” J. Innov. Econ. Dev., pp. 1–2, 2010.
  9. P. K. Kundu, M. Dhiman, A. Modak, A. Chowdhury, V. Polshettiwar, and D. Maiti, “Palladium Nanoparticles Supported on Fibrous Silica (KCC-1-PEI/Pd): A Sustainable Nanocatalyst for Decarbonylation Reactions,” Chempluschem, vol. 81, no. 11, pp. 1142–1146, 2016, doi: 10.1002/cplu.201600245.
  10. N. Yusof, S. Triwahyono, and A. A. Jalil, “An Interaction Study Between CO and H2 with Fibrous Silica KCC-1 by In Situ FTIR,” Colloq., vol. 13, pp. 17–20, 2018.
  11. N. Bayal, B. Singh, R. Singh, and V. Polshettiwar, “Size and Fiber Density Controlled Synthesis of Fibrous Nanosilica Spheres (KCC-1),” Sci. Rep., vol. 6, no. April, pp. 1–11, 2016, doi: 10.1038/srep24888.
  12. R. Hasan, C. C. Chong, and H. D. Setiabudi, “Synthesis of KCC-1 Using Rice Husk Ash for Pb Removal from Aqueous Solution and Petrochemical Wastewater,” vol. 14, no. 1, pp. 196–204, 2019, doi: 10.9767/bcrec.14.1.3619.196-204.
  13. E. Febriyanti, R. R. Mukti, V. Suendo, I. N. Marsih, S. Triwahyono, S. Ismadji, & Ismunandar, “Synthesis of Mesoporous Silica Particles with Fibrous Morphology via Self-Assembly Process in Microemulsion System,” Adv. Mater. Res., vol. 1112, pp. 172–175, 2015, doi: 10.4028/www.scientific.net/amr.1112.172.
  14. S. Azizi, N. Shadjou, and M. Hasanzadeh, “KCC-1-NH2-DPA: an efficient heterogeneous recyclable nanocomposite for the catalytic synthesis of tetrahydrodipyrazolopyridines as a well-known organic scaffold in various bioactive derivatives,” Nanocomposites, vol. 5, no. 4, pp. 124–132, 2019, doi: 10.1080/20550324.2019.1681623.
  15. M. S. R. M. Nasir, M. P. Khairunnisa, N. W.
  16. C. Jusoh, and A. A. Jalil, “Enhanced carbon dioxide adsorption by amine-modified KCC-1,” IOP Conf. Ser. Earth Environ. Sci., vol. 476, no. 1, 2020, doi: 10.1088/1755-1315/476/1/012084.
  17. M. N. Salman, D. Krisdiyanto, K. Khamidinal, and P. Arsanti, “Preparasi Katalis Silika Sulfat Dari Abu Sekam Padi Dan Uji Katalitik Pada Reaksi Esterifikasi Gliserol Dengan Anhidrida Asam Asetat,” Reaktor, vol. 15, no. 4, pp. 231–240, 2015, doi: 10.14710/reaktor.15.4.231-240.
  18. U. Kalapathy, A. Proctor, and J. Shultz, “A Simple Method for Production of Pure Silica from Rice Hull Ash,” Fuel Energy Abstr., vol. 42, no. 1, p. 45, 2001, doi: 10.1016/s0140-6701(01)80487-2.
  19. K. E.A. AbouAitah and A. A. Farghali, “Mesoporous Silica Materials in Drug Delivery System: pH/Glutathione- Responsive Release of Poorly Water-Soluble Pro-drug Quercetin from Two and Three-dimensional Pore-Structure Nanoparticles,” J. Nanomed. Nanotechnol., vol. 07, no. 02, 2016, doi: 10.4172/2157-7439.1000360.
  20. Z. Mohammadbagheri and A. Najafi Chermahini, “KCC-1/Pr-SO3H as an efficient heterogeneous catalyst for production of n-butyl levulinate from furfuryl alcohol,” J. Ind. Eng. Chem., vol. 62, pp. 401–408, 2018, doi: 10.1016/j.jiec.2018.01.020.
  21. Z. Ali, L. Tian, B. Zhang, N. Ali, M. Khan, and Q. Zhang, “Synthesis of paramagnetic dendritic silica nanomaterials with fibrous pore structure (Fe3O4@KCC-1) and their application in immobilization of lipase from: Candida rugosa with enhanced catalytic activity and stability,” New J. Chem., vol. 41, no. 16, pp. 8222–8231, 2017, doi: 10.1039/c7nj01912b.
  22. I. Herlina and E. R. Fitra, “Sintesis dan Karakterisasi Silika Tersulfatasi dari Sekam Padi,” J. Rekayasa Proses, vol. 12, no. 1, p. 17, 2018, doi: 10.22146/jrekpros.34362.
  23. M. Meliyana, C. Rahmawati, and L. Handayani, “Sintesis Silika Dari Abu Sekam Padi Dan Pengaruhnya Terhadap Karakteristik Bata Ringan,” Elkawnie, vol. 5, no. 2, p. 164, 2019, doi: 10.22373/ekw.v5i2.5533.
  24. H. Sastrohamidjojo, Dasar-Dasar Spektroskopi. Yogyakarta: Liberty, 2007.

Open Access Copyright (c) 2021 Journal of Natural Sciences and Mathematics Research
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Journal of Natural Sciences and Mathematics Research
Published by Faculty of Science and Technology
Universitas Islam Negeri Walisongo Semarang

Jl Prof. Dr. Hamka Kampus III Ngaliyan Semarang 50185
Website: https://journal.walisongo.ac.id/index.php/JNSMR
Email:jnsmr@walisongo.ac.id

ISSN: 2614-6487 (Print)
ISSN: 2460-4453 (Online)

View My Stats

Lisensi Creative Commons

This work is licensed under a Creative Commons Lisensi Creative Commons .

apps