Adsorption of Copper Ion from Acidic Wastewater by Local Natural Zeolite

Authors

  • Candra Yulius Tahya Chemistry Education Study Program, Faculty of Education, Universitas Pelita Harapan
  • Melanie Cornelia Department of Food Technology, Faculty of Science and Technology, Universitas Pelita Harapan
  • Tagor M Siregar Department of Food Technology, Faculty of Science and Technology, Universitas Pelita Harapan
  • Muhammad Ikhsan Taipabu Department of Chemical Engineering, National Cheng Kung University, Tainan

DOI:

https://doi.org/10.21580/wjc.v5i2.11714

Keywords:

acidic wastewater, copper, zeolite.

Abstract

Natural zeolites are available in Indonesia in very large quantities and are available in the market at very affordable prices. The use of zeolite has developed in various fields of industry, water treatment and wastewater treatment. The study on the ability of local natural zeolite to adsorb copper from acidic wastewater from a laboratory in Tangerang has been conducted.  XRD data show that the local natural zeolite consists of mordenite as main mineral and quartz as an accessory mineral. Acid activation of zeolite with HCl 3 M could remove quartz impurities from natural zeolite based on XRD data. Mordenite is one of the most abundant zeolite minerals and commercially used for many purposes including adsorbents, catalyst, fertilizer, and gas separation. The crystallinity of mordenite decreases throughout the process of acid activation and calcination. The calcined zeolite has better copper adsorption ability compared to local natural zeolite without any treatment. The optimum copper adsorption percentage is 14.554% at solution pH of 0.3 by using 10 grams of calcined zeolite in 200 mL of wastewater solution.

Downloads

Download data is not yet available.

Author Biographies

Candra Yulius Tahya, Chemistry Education Study Program, Faculty of Education, Universitas Pelita Harapan

Chemistry Education Study Program, Faculty of Education

Melanie Cornelia, Department of Food Technology, Faculty of Science and Technology, Universitas Pelita Harapan

Department of Food Technology, Faculty of Science and Technology

Tagor M Siregar, Department of Food Technology, Faculty of Science and Technology, Universitas Pelita Harapan

Department of Food Technology, Faculty of Science and Technology

Muhammad Ikhsan Taipabu, Department of Chemical Engineering, National Cheng Kung University, Tainan

Department of Chemical Engineering

References

Ahmad, I., Siddiqui, W. A., & Ahmad, T. (2017). Synthesis , Characterization of Silica Nanoparticles and Adsorption Removal of Cu2+ Ions in Aqueous Solution. International Journal of Emerging Technology and Advanced Engineering, 7(9), 2250–2459. https://www.researchgate.net/publication/319711150_Synthesis_Characterization_of_Silica_Nanoparticles_and_Adsorption_Removal_of_Cu_2_Ions_in_Aqueous_Solution

Al Muttaqii, M., Birawidha, D. C., Isnugroho, K., Yamin, M., Hendronursito, Y., Istiqomah, A. D., & Dewangga, D. P. (2019). Pengaruh Aktivasi secara Kimia menggunakan Larutan Asam dan Basa terhadap Karakteristik Zeolit Alam. Jurnal Riset Teknologi Industri, 13(2), 266. https://doi.org/10.26578/jrti.v13i2.5577

Alshameri, A., Xinghu, W., Dawood, A. S., Xin, C., Yan, C., & Assabri, A. M. (2019). Characterization of Yemeni natural zeolite (Al-Ahyuq area) and its environment applications: A review. Journal of Ecological Engineering, 20(4), 157–166. https://doi.org/10.12911/22998993/102842

Atikah, W. S. (2017). Media Adsorben Pewarna Tekstil the Potentiality of Activated Natural Zeolite From Gunung. Arena Tekstil, 32(1), 17–24. http://ejournal.kemenperin.go.id/jiat/article/view/2650/2641

Azizishirazi, A., Klemish, J. L., & Pyle, G. G. (2021). Sensitivity of Amphibians to Copper. Environmental Toxicology and Chemistry, 40(7), 1810–1821. https://doi.org/10.1002/etc.5049

Bhat, S. A., Hassan, T., & Majid, S. (2019). HEAVY METAL TOXICITY AND THEIR HARMFUL EFFECTS ON LIVING ORGANISMS-A REVIEW. International Journal of Medical Science and Diagnosis Research, 3(1), 106–122. https://doi.org/10.32553/JMSDR

Bishnoi, A., Kumar, S., & Joshi, N. (2017). Chapter 9 - Wide-Angle X-ray Diffraction (WXRD): Technique for Characterization of Nanomaterials and Polymer Nanocomposites. In S. Thomas, R. Thomas, A. K. Zachariah, & R. K. B. T.-M. M. in N. C. Mishra (Eds.), Micro and Nano Technologies (pp. 313–337). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-323-46141-2.00009-2

Burris, L. E., & Juenger, M. C. G. (2020). Effect of calcination on the reactivity of natural clinoptilolite zeolites used as supplementary cementitious materials. Construction and Building Materials, 258, 119988. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2020.119988

Indah, D. R., Hatimah, H., & Hulyadi. (2021). Efektivitas Ampas Tahu sebagai Adsorben Logam Tembaga pada Air Limbah. Hydrogen: Jurnal Kependidikan Kimia, 8(2), 57–66.

Irawati, W., Ompusunggu, N. P., Susilowati, D. N., & Yuwono, T. (2019). Molecular and physiological characterization of indigenous copper-resistant bacteria from Cikapundung River, West Java, Indonesia. Biodiversitas, 20(2), 344–349. https://doi.org/10.13057/biodiv/d200206

Irawati, W., & Tahya, C. Y. (2020). Isolasi dan Karakterisasi Isolat Bakteri Resisten Tembaga dari Sungai Cisadane. Berita Biologi, 19(3).

Irawati, W., & Tahya, C. Y. (2021). Copper Removal by Enterobacter cloacae strain IrSuk1 , Enterobacter cloacae strain IrSuk4a , and Serratia nematodiphila strain IrSuk13 Isolated from Sukolilo River-Indonesia Copper Removal by Enter. 1053(012038), 1–9. https://doi.org/10.1088/1757-899X/1053/1/012038

Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., & Beeregowda, K. N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7(2), 60–72. https://doi.org/10.2478/intox-2014-0009

Kadirbekov, K., Zhambakin, D., Kadirbekov, A., & Imanbekov, K. (2017). Acid Activation of Natural Zeolite with High Content of Iron Oxides in Creation of Selective Sorbents and Catalysts. MATEC Web of Conferences, 96, 1–6. https://doi.org/10.1051/matecconf/20179600002

Klunk, M. A., Schröpfer, S. B., Dasgupta, S., Das, M., Caetano, N. R., Impiombato, A. N., Wander, P. R., & Moraes, C. A. M. (2020). Synthesis and characterization of mordenite zeolite from metakaolin and rice husk ash as a source of aluminium and silicon. Chemical Papers, 74(8), 2481–2489. https://doi.org/10.1007/s11696-020-01095-4

Murthy, Z. V. P., Parikh, P. A., & Patel, N. B. (2013). Application of β-Zeolite, Zeolite Y, and Mordenite as Adsorbents to Remove Mercury from Aqueous Solutions. Journal of Dispersion Science and Technology, 34(6), 747–755. https://doi.org/10.1080/01932691.2012.685839

Narayanan, S., Tamizhdurai, P., Mangesh, V. L., Ragupathi, C., Santhana Krishnan, P., & Ramesh, A. (2020). Recent advances in the synthesis and applications of mordenite zeolite - review. RSC Advances, 11(1), 250–267. https://doi.org/10.1039/d0ra09434j

Nurlaila, I., Irawati, W., Purwandari, K., & Pardamean, B. (2021). K-Means Clustering Model to Discriminate Copper-Resistant Bacteria as Bioremediation Agents. Procedia Computer Science, 179, 804–812. https://doi.org/10.1016/j.procs.2021.01.068

Pourahmad, A., Sohrabnezhad, S., & Sadeghi, B. (2010). Removal of Heavy Metals from Aqueous Solution by Poly(methacrylohydrazide). Int. J. Nanosci. Nanotechnol, 6(1), 31–41.

Ruys, A. (2019). 4 - Processing, structure, and properties of alumina ceramics. In A. B. T.-A. C. Ruys (Ed.), Woodhead Publishing Series in Biomaterials (pp. 71–121). Woodhead Publishing. https://doi.org/https://doi.org/10.1016/B978-0-08-102442-3.00004-X

Sacco, A., Martelli, F., Pal, A., Saraceno, C., Benussi, L., Ghidoni, R., Rongioletti, M., & Squitti, R. (2022). Regulatory miRNAs in Cardiovascular and Alzheimer’s Disease: A Focus on Copper. International Journal of Molecular Sciences, 23(6). https://doi.org/10.3390/IJMS23063327

Samoila, P., Humelnicu, A. C., Ignat, M., Cojocaru, C., & Harabagiu, V. (2019). Chitin and Chitosan for Water Purification. In Chitin and Chitosan (pp. 429–460). https://doi.org/https://doi.org/10.1002/9781119450467.ch17

Simbolon, A. R., Riani, E., & Wardiatno, Y. (2014). Health Risk Assessment of Heavy Metal Pollution in Water, Sediment, and Scallop (Placuna placenta) at Tangerang District Littoral. Journal of Natural Resources and Environmental Management, 4(1), 75–83. https://doi.org/10.19081/jpsl.2014.4.1.75

Tahya, C. Y., Irawati, W., & Purba, F. J. (2019). Phenol Biodegradation and Catechol 2,3-Dioxygenase Gene Sequencing of Bacillus cereus IrC2 isolated from Rungkut Indonesia. Jurnal Kimia Terapan Indonesia, 21(1), 23–30. https://doi.org/10.14203/jkti.v21i1.415

Tišler, Z., Hrachovcová, K., Svobodová, E., Šafář, J., & Pelíšková, L. (2019). Acid and thermal treatment of alkali-activated zeolite foams. Minerals, 9(12). https://doi.org/10.3390/min9120719

Trisunaryanti, W., Triyono, Armunanto, R., Hastuti, L. P., Ristiana, D. D., & Ginting, R. V. (2018). Hydrocracking of α-cellulose using Co, Ni, and Pd supported on mordenite catalysts. Indonesian Journal of Chemistry, 18(1), 166–172. https://doi.org/10.22146/ijc.26491

Turkyilmaz, H., Kartal, T., & Yildiz, S. Y. (2014). Optimization of lead adsorption of mordenite by response surface methodology: Characterization and modification. Journal of Environmental Health Science and Engineering, 12(1), 1–9. https://doi.org/10.1186/2052-336X-12-5

Wahono, S. K., Prasetyo, D. J., Jatmiko, T. H., Suwanto, A., Pratiwi, D., Hernawan, & Vasilev, K. (2019). Transformation of Mordenite-Clinoptilolite Natural Zeolite at Different Calcination Temperatures. IOP Conference Series: Earth and Environmental Science, 251(1). https://doi.org/10.1088/1755-1315/251/1/012009

Wahono, S. K., & Rizal, W. A. (2014). Biogas filter based on local natural zeolite materials. International Journal of Renewable Energy Development, 3(1), 1–5. https://doi.org/10.14710/ijred.3.1.1-5

Wang, X.-S., Hu, H.-Q., & Sun, C. (2007). Removal of Copper (II) Ions from Aqueous Solutions using Na-mordenite. Separation Science and Technology, 42(6). https://doi.org/10.1080/01496390701241956

Downloads

Published

2022-12-25