Adsorption of Lubricant Waste by Porous Materials: A Review

Authors

  • Ayu Fahimah Diniyah Wathi Chemistry Education Study Program, Faculty of Education and Teacher Training, Universitas Terbuka, Indonesia
  • Shofrina Surya Dewi Department of Chemistry Education, Faculty of Mathematics and Natural Sciences, Universitas Negeri Yogyakarta
  • Nuruddin Kafy El-Ridlo Petroleum Engineering, Sekolah Tinggi Teknologi Migas
  • Sukma Wahyu Wijayanti Chemistry Education Study Program, Faculty of Education and Teacher Training, Universitas Terbuka
  • Faizal Akhmad Adi Masbukhin Chemistry Education Study Program, Faculty of Education and Teacher Training, Universitas Terbuka
  • Ahmad Bikharudin Department of Biomaterials, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University

DOI:

https://doi.org/10.21580/wjc.v6i1.14998

Keywords:

Adsorbate, B3 waste, contaminants

Abstract

The rapid development of technology today cannot be separated from the role of various kinds of machines to produce or increase the use value of an item. The more the engine operates, the more lubricant is used. Lubricants are included in the category of B3 waste (Toxic Hazardous Materials) so that they have a negative impact on the environment. Nearly 50% of all mineral lubricants enter the environment and cause irreparable environmental damage due to direct contact with water and soil. One of the efforts that can be done to reduce the B3 content in used lubricants is adsorption using a porous adsorbent. This study aims to see the relationship between the physical and chemical properties of the adsorbent with the physical and chemical properties of the adsorbate. This research was conducted by studying the literature of scientific articles with related topics. The results showed that some contaminants such as organic compounds, inorganic species, soot, hydrocarbons, and ash can be adsorbed with various adsorbents, namely modified sawdust, bentonite, fly ash, activated carbon, activated alumina, and zeolite Y derived from kaolin.

Downloads

Download data is not yet available.

Author Biographies

Ayu Fahimah Diniyah Wathi, Chemistry Education Study Program, Faculty of Education and Teacher Training, Universitas Terbuka, Indonesia

Chemistry Education Study Program, Faculty of Education and Teacher Training, Universitas Terbuka, Indonesia

Shofrina Surya Dewi, Department of Chemistry Education, Faculty of Mathematics and Natural Sciences, Universitas Negeri Yogyakarta

Department of Chemistry Education, Faculty of Mathematics and Natural Sciences, Universitas Negeri Yogyakarta, Indonesia

Nuruddin Kafy El-Ridlo, Petroleum Engineering, Sekolah Tinggi Teknologi Migas

Sekolah Tinggi Teknologi Minyak dan Gas Balikpapan, Indonesia

Sukma Wahyu Wijayanti, Chemistry Education Study Program, Faculty of Education and Teacher Training, Universitas Terbuka

Chemistry Education Study Program, Faculty of Education and Teacher Training, Universitas Terbuka, Indonesia

Faizal Akhmad Adi Masbukhin, Chemistry Education Study Program, Faculty of Education and Teacher Training, Universitas Terbuka

Chemistry Education Study Program, Faculty of Education and Teacher Training, Universitas Terbuka, Indonesia

References

Adhvaryu, A., Erhan, S.. (2002). Epoxidized soybean oil as a potential source of hightemperature lubricants. Ind. Crop. Prod. 15 (3), 247-254.

Ahmed, H. A., Elbanna, S. A., Khalil, R., Tayel, A., & El Basaty, A. B. (2022). Ultrasonic-assisted Hydrothermal Synthesis of Zeolite Y Adsorbent from Natural Kaolin for the Recycling of Waste Engine Oil. Egyptian Journal of Chemistry, 65(131), 151-160. 10.21608/EJCHEM.2022.106134.4879

Alang, M.B., Ndikontar, M.K., Sani, Y.M., Ndifon, P.T. (2018). Synthesis and characterization of a biolubricant from Cameroon palm kernel seed oil using a locally produced base catalyst from plantain peelings. Green Sustain. Chem. 8 (3), 275-287.

Almasi, S., Ghobadian, B., Naja, G., & Dehghani, M. (2021). A review on bio-lubricant production from non-edible oil-bearing biomass resources in Iran : Recent progress and perspectives. 290. https://doi.org/10.1016/j.jclepro.2021.125830

Amir, F., Mamaghani, A., Salem, A., & Salem, S. (2022). continuous extrusion and fusion techniques. Process Safety and Environmental Protection, 159, 500–510. https://doi.org/10.1016/j.psep.2022.01.025

Atikah, A. (2018). Efektifitas Bentonit Sebagai Adsorben Pada Proses Peningkatan Kadar Bioetanol. Jurnal Distilasi, 2(2), 23–32. https://doi.org/10.32502/jd.v2i2.1200

Candra, A., Sulastry, T., & Anwar, M. (n.d.). Pengaruh Konsentrasi dan Waktu Kontak pada Adsorpsi Arang Aktif Terhadap Viskositas Oli ( Minyak Pelumas ) Bekas Influence of Activated Charcoal Concentration and Contact Time the Adsorption Towards the Used Oil Viscosity ( Oil Lubrication ). 27–33.

Cardoso, C. M., Quina, M. J., & Gando-ferreira, L. M. (2017). An overview of waste lubricant oil management system : Physicochemical characterization contribution for its improvement. 150. https://doi.org/10.1016/j.jclepro.2017.03.024

Chen, X., Xu, R., Xu, Y., Hu, H., Pan, S., & Pan, H. (2018). Natural adsorbent based on sawdust for removing impurities in waste lubricants. Journal of Hazardous Materials, 350(February), 38–45. https://doi.org/10.1016/j.jhazmat.2018.01.057

Daham, G. R., AbdulRazak, A. A., Hamadi, A. S., & Mohammed, A. A. (2017). Re-refining of used lubricant oil by solvent extraction using central composite design method. Korean Journal of Chemical Engineering, 34, 2435-2444.

Dan, B., Beracun, B., & Timur, J. (2011). Pelumas bekas sebagai limbah bahan di PT. Inka ( persero ).

Derkowski, A., Franus, W., Beran, E., & Czímerová, A. (2006). Properties and potential applications of zeolitic materials produced from fly ash using simple method of synthesis. Powder Technology, 166(1), 47-54. https://doi.org/10.1016/j.powtec.2006.05.004

Habibah, U., & Jakarta, U. M. (2018). Review : Kajian Adsorbsi Logam Dalam Pelumas Bekas Dan Prospek. January, 10–16. https://doi.org/10.24853/konversi.5.1.11-16

Hasyim, U. H., Ningrum, D. A., Apriliani, E., (2017). Kajian Model Kesetimbangan Adsorpsi Logam Pada Limbah Pelumas Bekas Menggunakan Bentonit. Prosiding Seminar Nasional Sains dan Teknik, Fakultas Teknik, Universitas Muhammadiyah Jakarta, November, 1–2.

Kemala, D., Moersidik, S. S., Adityosulindro, S., & Hilwa, F. (2019). Enhancing lead adsorption in waste lubricant oil with activated clay as bleaching earth. 20, 0–6.

McNutt, J., (2016). Development of biolubricants from vegetable oils via chemical modification. J. Ind. Eng. Chem. 36, 1-12.

Mohammed, R. R., Ibrahim, I. A. R., Taha, A. H., & Mckay, G. (2013). Waste lubricating oil treatment by extraction and adsorption. Chemical Engineering Journal, 220, 343–351. https://doi.org/10.1016/j.cej.2012.12.076

Opoku, B. K., Friday, J. O., Essumang, D. K., & Osa, E. B. (2020). Adsorption of heavy metals contaminants in used lubricating oil using palm kernel and coconut shells activated carbons. American Journal of Chemical Engineering, 8(1): 11-18.

Osman, D. I., Attia, S. K., & Taman, A. R. (2018). Recycling of used engine oil by different solvent. Egyptian Journal of Petroleum, 27(2), 221-225. https://doi.org/10.1016/j.ejpe.2017.05.010

Parekh, K., Shahabuddin, S., Gaur, R., & Dave, N. (2022). Prospects of conducting polymer as an adsorbent for used lubricant oil reclamation. Materials Today: Proceedings, 62, 7053–7056. https://doi.org/10.1016/j.matpr.2022.01.130

Partikel, U., & Aktif, K. (2018). JURNAL INTEGRASI PROSES Website : http://jurnal.untirta.ac.id/index.php/jip PENGARUH JENIS AKTIVATOR DAN UKURAN KARBON AKTIF TERHADAP PEMBUATAN ADSORBENT DARI SERBIK GERGAJI KAYU SENGON ( PARASERIANTHES FALCATARIA ) 1 , 2 Program Studi Teknik Kimia , Faku. 7(2), 58–66.

Paryanto, Arsyad, M. F., & Aji, M. F. I. (2018). Penentuan Nilai Kesetimbangan Adsorbsi Zat Warna Alami Kulit Mahoni Ke Dalam Kain Dengan Proses Batch. Jurnal Inovasi Teknik Kimia, 3(2), 1–7. https://doi.org/10.31942/inteka.v3i2.2482

Pinheiro, C. T., Ascensão, V. R., Reis, M. S., & Quina, M. J. (2017). Science of the Total Environment A data-driven approach for the study of coagulation phenomena in waste lubricant oils and its relevance in alkaline regeneration treatments. Science of the Total Environment, 599–600, 2054–2064. https://doi.org/10.1016/j.scitotenv.2017.05.124

Salem, S., Salem, A., & Agha, A. (2015). Journal of Industrial and Engineering Chemistry Application of Iranian nano-porous Ca-bentonite for recovery of waste lubricant oil by distillation and adsorption techniques. Journal of Industrial and Engineering Chemistry, 23, 154–162. https://doi.org/10.1016/j.jiec.2014.08.009

Sani, A. A., Ariasya, M. A., Mesin, J. T., Sriwijaya, P. N., & Sriwijaya, P. N. (2020). Proses Pengolahan Limbah B3 (Oli Bekas) Menjadi Bahan Bakar Cair dengan Perlakuan Panas yang Konstan. Jurnal Austenit, 12(2), 48–53.

Hasyim, U.H., (2016). Review: Kajian Adsorbsi Logam Dalam Pelumas Bekas Dan Prospek Pemanfaatannya Sebagai Bahan Bakar, Konversi, 5 (1), page 11–16.

Shabanzade, H., Salem, A., & Salem, S. (2018). Management of adsorbent content in waste motor oil regeneration by spectrophotometrical study and effective acidi fi cation in production of nano-porous clay. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 202, 214–221. https://doi.org/10.1016/j.saa.2018.05.056

Singh, Y., Farooq, A., Raza, A., Mahmood, M.A., Jain, S., (2017). Sustainability of a nonedible vegetable oil-based bio-lubricant for automotive applications: a review. Process Saf. Environ. Protect. 111, 701-713.

Suryawan, B. (2004). Karakteristik Zeolit Indonesia sebagai Adsorben Uap Air. Disertasi. Fakultas Teknik Universitas Indonesia, Jakarta

Widodo, L. U., Najah, S., & Istiqomah, C. (2020). Pembuatan adsorben berbahan baku tanah liat dari limbah industri pencucian pasir silika dengan perbedaan konsentrasi HCl dan waktu aktivasi. Journal of Research and Technology, 6(1), 10–15. https://journal.unusida.ac.id/index.php/jrt/article/view/134

Zaccheria, F., Mariani, M., Psaro, R., Bondioli, P., & Ravasio, N. (2016). Environmentally friendly lubricants through a zero-waste process. “Applied Catalysis B, Environmental,” 181, 581–586.

https://doi.org/10.1016/j.apcatb.2015.08.032

Downloads

Published

2023-07-25