Characterization of Kaolin Deposits in Kutigi, Niger State, Northern Nigeria

Authors

  • Samuel Ominu Joseph Department of Chemical Engineering, School of Infrastructure, Process Engineering and Technology, Federal University of Technology Minna, Niger State, Nigeria https://orcid.org/0000-0002-9558-9377
  • David Adeniyi Olalekan Department of Chemical Engineering, School of Infrastructure, Process Engineering and Technology, Federal University of Technology Minna, Niger State, Nigeria
  • Aderemi Olutoye Moses Department of Chemical Engineering, School of Infrastructure, Process Engineering and Technology, Federal University of Technology Minna, Niger State, Nigeria
  • Abubakar Garba Isah Department of Chemical Engineering, School of Infrastructure, Process Engineering and Technology, Federal University of Technology Minna, Niger State, Nigeria
  • Alhassan Adeku Sallau Chemistry Advanced Research Center, Sheda Science and Technology Complex, Abuja, Nigeria

DOI:

https://doi.org/10.21580/wjc.v6i2.17283

Keywords:

Agglomeration, Kutigi, Kaolin, mesoporous, aluminium silicate

Abstract

Kaolinite is among the most important mineral resource of kaolin clay sample with numerous industrial applications. Its effective characterization in terms of its chemical composition, structure and thermal properties is important for streamline it specific industrial application. In this study, the mineralogical, thermal properties, surface morphology, surface area, structural functional groups and chemical compositions were determined using the X-ray diffraction (XRD), thermogravimetry analyser, scanning electron microscope (SEM), nitrogen adsorption-desorption BET, Fourier transform infrared spectroscopy (FTIR) and X-ray fluorescence (XRF) method. The major phases in the kaolin clay samples was the kaolinite with quartz, orthoclase, and albite as minor phases. the kaolin sample loss in weight was due to dihydroxylation. The kaolin particles were made of agglomeration of its irregular sized particles. The BET surface area of kaolin sample was 181.549 m2/g, with particle size of 2.98 nm and pore volume of 0.161 cc/g. The FTIR spectra showed presence of peaks for Si-O at positions 2359.48,1217.35, 1032.21, and 753.55 cm-1, while the Al-O group appeared at 1365.84, 912.65 and 668.21 cm-1. Elemental composition content results from XRF showed that SiO2 was 34.25 wt %, Al2O3 was 28.16 wt % as the major content while the minor content such as Fe2O3, MgO, TiO2, CeO2, K2O and ZrO2 were 1.17, 1.63, 1.59, 0.95, 0.37, and 0.27 wt % respectively.

Downloads

Download data is not yet available.

References

Abubakar, M., Muthuraja, A., Rajak, D. K., Ahmad, N., Pruncu, C. I., Lamberti, L., & Kumar, A. (2020). Influence of Firing Temperature on the Physical , Thermal and Microstructural Properties of Kankara Kaolin Clay : A Preliminary Investigation. 1–8.

Adeniyi, F. I., Ogundiran, M. B., Bhajantri, T. H., & Hanumantrai, B. (2020). Characterization of raw and thermally treated Nigerian kaolinite ‑ containing clays using instrumental techniques. SN Applied Sciences, 2(5), 1–14. https://doi.org/10.1007/s42452-020-2610-x

Alabi, A. A., Garba, I., Danbatta, U. A., & Najime, T. (2015). Mineralogy and Geochemical Characteristics of Clay Occurrence in Central Bida Basin Northwestern Nigeria. 144–154.

Aragaw, T. A., & Angerasa, F. T. (2020). Heliyon Synthesis and characterization of Ethiopian kaolin for the removal of basic yellow ( BY 28 ) dye from aqueous solution as a potential adsorbent. Heliyon, 6(April), e04975. https://doi.org/10.1016/j.heliyon.2020.e04975

Aroke, U. O., & Osha, O. A. (2013). Properties and Characterization of Kaolin Clay from Alkaleri ,. January.

Auduson, A. E., & Onuoha, K. M. (2020). Earth Science and Geophysics Cretaceous Bida and Sokoto Basins of Nigeria : Deducing Basin Architecture and Basement Topography from Aeromagnetic Data Analyses. https://doi.org/10.35840/2631-5033/1843

Bukalo, N. N., Ekosse, E. G.-I., Odiyo, O. J., & Ogola, S. J. (2017). Geochemistry of Selected Kaolins from Cameroon. 600–612.

Chen, M., Yang, T., Han, J., Zhang, Y., Zhao, L., Zhao, J., Li, R., Huang, Y., Gu, Z., & Wu, J. (2023). The Application of Mineral Kaolinite for Environment Decontamination : A Review. 1–17.

Chigondo, F., Nyamunda, B. C., & Bhebhe, V. (2015). Extraction of Water Treatment Coagulant from Locally Abundant Kaolin Clays. 2015.

Deju, R., Cucos, A., Mincu, M., Tuca, C., & Engineering, N. (2021). Thermal characterization of kaolinitic clay. Romanian Journal of Physics, 904, 1–8.

Dewi, R., Agusnar, Z., Alfian, Z., & Tamrin. (2020). PHYSICOCHEMICAL CHARACTERIZATION OF NATURAL KAOLIN FROM JABOI INDONESIA. Rasayan J. Chem., 13(1), 382–388. http://www.rasayanjournal.com

Garcia-Valles, M., Alfonso, P., Martinez, S., & Roca, N. (2020). Mineralogical and Thermal Characterization of Kaolinitic Clays from Terra Alta (Catalonia, Spain) Maite. Minerals Article, 10(142), 1–15. https://doi.org/doi:10.3390/min10020142

Hernández-chávez, M., Vargas-ramírez, M., Herrera-gonzález, A. M., García-serrano, J., Cruz-ramírez, A., & Romero-serrano, J. A. (2021). Thermodynamic analysis of the influence of potassium on the thermal behavior of kaolin raw material. 57(1), 39–52. https://doi.org/10.37190/ppmp/128393

Ibrahim, K. M., Moumani, M. K., & Mohammad, S. K. (2018). Extraction of γ -Alumina from Low-Cost Kaolin. Resources, 7, 1–12. https://doi.org/10.3390/resources7040063

Ihekweme, O. G., Shondo, N. J., Orisekeh, I. K., Kalu-uka, M. G., Nwuzor, C. I., & Onwualu, P. A. (2020). Heliyon Characterization of certain Nigerian clay minerals for water puri fi cation and other industrial applications. Heliyon, 6(April), e03783. https://doi.org/10.1016/j.heliyon.2020.e03783

Maina, E. W., Wanyika, H. J., & Gacanja, K. (2015). Instrumental Characterization of Montmorillonite Clay by FT-IR and XRD from J . K . U . A . T Farm , in the Republic of Kenya. Chemistry and Materials Research, 7(10), 43–49.

Mudi, K. Y., Akande, H. F., & Oyawoye, M. R. (2018). Characterization of Kaolin Clay from Ejigbo ,. International Journal of Innovative Science, Engineering & Technology, 5(11), 1–14. www.ijiset.com

Omang, B. O., Kudamnya, E. A., Owolabi, A. O., Odey, J., Aniwetalu, E. U., & Ako, T. A. (2019). Characterization of Kaolin Deposits in Okpella and Environs , Southern Nigeria. 2019, 317–327. https://doi.org/10.4236/ijg.2019.103018

Oyetade, P. O., Konwea, I. C., Ojo, J. O., & Odesanmi, M. T. (2021). Mineralogical studies of the Maastrich Ɵ an Gerinya Claystone of the Pa ƫ Forma Ɵ on , southern Bida Basin , Nigeria : Implica Ɵ on for industrial applica Ɵ on. Mineralogia, 52, 10–18. https://doi.org/10.2478/mipo-2021-0002

Shaaibu, S., Abdullahi, A. U., Sadiq, Y. O., & Odey, O. A. (2020). Physio-Chemical and Thermal Properties of Alkaleri Kaolin , Bauchi State , Nigeria for Ceramics Applications. FUTY Journal of the Environment, 14(1), 60–68.

Shi, K., Santiso, E. E., & Gubbins, K. E. (2021). Current Advances in Characterization of Nano-porous Materials : Pore Size Distribution and Surface Area. Springer International Publishing. https://doi.org/10.1007/978-3-030-65991-2

Tantawy, M. A., & Alomari, A. A. (2019). Extraction of Alumina from Nawan Kaolin by Acid Leaching. ORIENTAL JOURNAL OF CHEMISTRY, 35(3), 1013–1021.

Thommes, M., Kaneko, K., Neimark, A. V, Olivier, J. P., Rodriguez-reinoso, F., Rouquerol, J., & Sing, K. S. W. (2015). Physisorption of gases , with special reference to the evaluation of surface area and pore size distribution ( IUPAC Technical Report ). Pure Appl. Chem. 2015;, 87(9–10), 1051–1069. https://doi.org/10.1515/pac-2014-1117

Vaculikova, L., Plevova, E., Vallova, S., & Koutnik, I. (2011). Characterization and differentiation of kaolinites from selected Czech deposits using infrared spectroscopy and differential thermal analysis. Acta Geodyn. Geomater, 8(1), 59–67.

Downloads

Published

2023-12-15