Molecular Docking of Acetylacetone-Based Oxindole Against Indoleamine 2,3-Dioxygenase: Study of Energy Minimization

Authors

  • Frans Josaphat Department of Chemistry, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
  • Arif Fadlan Department of Chemistry, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia http://orcid.org/0000-0002-6138-4015

DOI:

https://doi.org/10.21580/wjc.v6i2.17638

Keywords:

molecular docking, energy minimization, oxindole, IDO-1

Abstract

Molecular docking plays an essential role in drug discovery because it is more efficient and more affordable compared to traditional synthesis methods and biological assays. Molecular docking determines the conformation and affinity of non-covalent bonds between macromolecules (receptors) and small molecules (ligands) computationally. Energy minimization carried generally out by using the Merck Molecular Force Field 94 (MMFF94) force field produces ligands with the most stable conformation. MarvinSketch and Open Babel for energy minimization were utilized in this docking study of acetylacetone-based oxindole derivatives to 2,3-dioxygenase indoleamine macromolecules (IDO-1, PDB: 2D0T). The results showed that MarvinSketch provides better binding energy than energy minimization with Open Babel. Molecular docking indicated different interactions between 2D0T macromolecule residues with ligands that have been prepared using MarvinSketch, Open Babel, and without energy minimization.

Downloads

Download data is not yet available.

References

Bell, E. W., & Zhang, Y. (2019). DockRMSD: An Open-source Tool for Atom Mapping and RMSD Calculation of Symmetric Molecules Through Graph Isomorphism. Journal of Cheminformatics, 11(40), 1–9. https://doi.org/10.1186/s13321-019-0362-7

ChemAxon. (n.d.). MarvinSketch (Marvin 20.13). ChemAxon. www.chemaxon.com

Cole, J. C., Nissink, J. W. M. and Taylor, R. (2005). Protein-Ligand Docking and Virtual Screening with GOLD. In J. Alvarez & B. Shoichet (Eds.), Virtual Screening in Drug Discovery (pp. 379–415). CRC Press.

Cormen, T. H., Leiserson, C. E. and Rivest, R. L. (2009). Instructor’s Manual to Accompany Introduction to Algorithms 3ed.

Dallakyan, S., & Olson, A. J. (2015). Small-Molecular Library Screening by Docking with PyRx. Methods in Molecular Biology, 1263, 243–250.

Greco, F. A., Bournique, A., Coletti, A., Custodi, C., Dolciami, D., Carotti, A., & Macchiarulo, A. (2016). Docking Studies and mmcmurMolecular Dynamic Simulations Reveal Different Features of IDO1 Structure. Molecular Informatics, 35, 449–459. https://doi.org/10.1002/minf.201501038

Hari, S. (2019). In Silico Molecular Docking and ADME/T Analysis of Plant Compounds Against IL17A and IL18 Targets in Gouty Arthritis. Journal of Applied Pharmaceutical Science, 9(7), 018–026. https://doi.org/10.7324/JAPS.2019.90703

Hestenes, M. R., & Stiefel, E. (1952). Methods of conjugate gradients for solving linear systems. Journal of Research of the National Bureau of Standards, 49(6), 409. https://doi.org/10.6028/jres.049.044

Imre, G., Veress, G., Volford, A., & Farkas, O. (2003). Molecules from the Minkowski Space: An Approach to Building 3D Molecular Structures. Journal of Molecular Structure: THEOCHEM, 666–667, 51–59. https://doi.org/10.1016/j.theochem.2003.08.013

Jász, Á., Rak, A., Ladjanszki, I., & Cserey, G. (2019). Optimized GPU Implementation of Merck Molecular Force Field and Universal Force Field. Journal of Molecular Structure, 1188, 227–233. https://doi.org/10.1016/j.molstruc.2019.04.007

Nisha, C. M., Kumar, A., Nair, P., Gupta, N., Silakari, C., Tripathi, T., & Kumar, A. (2016). Molecular Docking and in silico ADMET Study Reveals Acylguanidine 7a as A Potential Inhibitor of β -secretase. Advances in Bioinformatics, 2016, 1–6. https://doi.org/10.1155/2016/9258578

O’Boyle, N. M., Banck, M., James, A. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open Babel: An Open Chemical Toolbox. Journal of Cheminformatics, 3(33), 1–14. https://doi.org/10.1186/1758-2946-3-33

Paul, S., Roy, A., Deka, S. J., Panda, S., Srivastava, G. N., Trivedi, V., & Manna, D. (2017). Synthesis and evaluation of oxindoles as promising inhibitors of the immunosuppressive enzyme indoleamine 2,3-dioxygenase 1. MedChemComm, 8(8), 1640–1654. https://doi.org/10.1039/c7md00226b

Platten, M., Nollen, E. A. A., Röhrig, U. F., Fallarino, F., & Opitz, C. A. (2019). Tryptophan metabolism as a common therapeutic target in cancer, neurodegeneration and beyond. Nature Reviews Drug Discovery, 18(5), 379–401. https://doi.org/10.1038/s41573-019-0016-5

Ramírez, D., & Caballero, J. (2018). Is It Reliable to Take the Molecular Docking Top Scoring Position as the Best Solution without Considering Available Structural Data?. Molecules, 23(5), 1–17. https://doi.org/10.3390/molecules23051038

Samdani, A., & Vetrivel, U. (2018). POAP: A GNU parallel based multithreaded pipeline of open babel and AutoDock suite for boosted high throughput virtual screening. Computational Biology and Chemistry, 74, 39–48. https://doi.org/10.1016/j.compbiolchem.2018.02.012

Schrödinger, L. (2015). The PyMOL Molecular Graphics System (2.0). Schrödinger, LLC. www.pymol.org

Schrödinger. (2020). Maestro (Schrodinger Release 2020-2). Schrödinger, LLC.

Sugimoto, H., Oda, S-i., Otsuki, T., Hino, T., Yoshida, T., & Shiro, Y. (2006). Crystal Structure of Human Indoleamine 2,3-dioxygenase: Catalytic Mechanism of O2 Incorporation by A Heme-containing Dioxygenase. Proceedings of the National Academy of Sciences of the United States of America, 103(8), 2611–2616. https://doi.org/10.1073/pnas.0508996103

Tangyuenyongwatana, P. (2017). Cross-docking Study of Flavonoids Against Tyrosinase Enzymes Using PyRx 0.8 Virtual Screening Tool. Journal of Pharmaceutical Sciences, 41, 189–192.

Trott, O. and Olsson, A. J. (2012). Software News and Updates Gabedit — A Graphical User Interface for Computational Chemistry Softwares. Journal of Computational Chemistry, 32, 174–182. https://doi.org/10.1002/jcc

Yu, J., Chen, W., Wu, C., & Chen, H. (2014). PEG-Protein Interaction Induced Contraction of NalD Chains. PLoS ONE, 9(5), 3–8. https://doi.org/10.1371/journal.pone.0096616

Zhang, G., Xing, J., Wang, Y., Wang, L., Ye, Y., Lu, D., Zhao, J., Luo, X., Zheng, M., & Yan, S. (2018). Discovery of Novel Inhibitors of Indoleamine 2,3-dioxygenase 1 Through Structure-Based Virtual Screening. Frontiers in Pharmacology, 9(MAR), 1–10. https://doi.org/10.3389/fphar.2018.00277

Zheng, M., Zhao, J., Cui, C., Fu, Z., Li, X., Liu, X., Ding, X., Tan, X., Li, F., Luo, X., Chen, K., & Jiang, H. (2018). Computational chemical biology and drug design: Facilitating protein structure, function, and modulation studies. Medicinal Research Reviews, 38(3), 914–950. https://doi.org/10.1002/med.21483

Zhou, C., Lai, F., Sheng, L., Chen, X., Li, Y., & Feng, Z. (2020). Design, synthesis, and biological evaluation of phenyl urea derivatives as IDO1 inhibitors. Molecules, 25(6). https://doi.org/10.3390/molecules25061447

Downloads

Published

2023-12-15