Synthesis And Study of Antimicrobial Properties of Βeta-Tricalcium Phosphate/Silver Nanoparticles

Authors

  • Siti Saprianti Universitas Tanjungpura, Pontianak, Kalimantan Barat, Indonesia
  • Gusrizal Gusrizal Universitas Tanjungpura, Pontianak, Kalimantan Barat, Indonesia
  • Intan Syahbanu Universitas Tanjungpura, Pontianak, Kalimantan Barat, Indonesia

DOI:

https://doi.org/10.21580/wjc.v7i1.21101

Abstract

Beta-tricalcium phosphate (β-TCP) is a compound used as a basic material for making bio-scaffolds and applied for controlled drug delivery and bone regeneration. This material has the advantages of osteoconductivity and biodegradability. However, this material has weaknesses in its antimicrobial properties, so it requires adding other ingredients to increase its ability, such as NpAg. This research aims to obtain β-TCP/NpAg, which has antimicrobial properties. This research started with NpAg, made β-TCP from a combination of Ca(OH)2 and H3PO4 synthesized β-TCP/NpAg, and tested antimicrobial activity using the disc method. The results of this study show that β-TCP has XRD characteristics in the diffraction pattern, such as 21,541, 25,339, 27,619, 30,881, 32,179, and 34,231. In addition, β-TCP/NpAg has XRD characteristics in the diffraction pattern, such as 25.90, 26.67, 27.95, 29.65, 31.17, 32.61, and 34.47, with the highest peak at 31.17, which is the diffraction pattern of NpAg. The antimicrobial β-TCP/NpAg results showed the ability to inhibit the test microbes by 84.37% on S. aureus, 95.17% on E. coli, and 38.83% on C. albicans.

Downloads

Download data is not yet available.

Author Biographies

Siti Saprianti, Universitas Tanjungpura, Pontianak, Kalimantan Barat

Universitas Tanjungpura, Pontianak, Kalimantan Barat

Gusrizal Gusrizal, Universitas Tanjungpura, Pontianak, Kalimantan Barat

Universitas Tanjungpura, Pontianak, Kalimantan Barat

Intan Syahbanu, Universitas Tanjungpura, Pontianak, Kalimantan Barat

Universitas Tanjungpura, Pontianak, Kalimantan Barat

References

Chen, J., Peng, Y., Zheng, Z., Sun, P., & Wang, X. (2015). Silver‐releasing and antibacterial activities of polyphenol‐based polyurethanes. Journal of Applied Polymer Science, 132(4).

Gokcekaya, O., Ergun, C., Webster, T. J., Bahadir, A., Ueda, K., Narushima, T., & Nakano, T. (2021). Effect of precursor deficiency induced Ca/P Ratio on antibacterial and osteoblast adhesion properties of Ag-incorporated

hydroxyapatite: Reducing Ag toxicity. Materials, 14(12), 3158.

Gurunathan, S., Jeong, J. K., Han, J. W., Zhang, X. F., Park, J. H., & Kim, J. H. (2015). Multidimensional effects of biologically synthesized silver nanoparticles in Helicobacter pylori, Helicobacter felis, and human lung (L132) and lung carcinoma A549 cells. Nanoscale research letters, 10, 1-17.

Gusrizal., Sri J. S., Eko S. K., and Bambang R., (2020), Silver Nanoparticles Capped with p-Hydroxybenzoic Acid as a Colorimetric Sensor for the Determination of Paraquat, Indones. J. Chem, Vol 20, No. 3, Page 689.

Holguín, S P. N., & Reyes-López, S. Y. (2020). Synthesis of hydroxyapatite-Ag composite as antimicrobial agent. Dose-Response, 18(3), 1559325820951342.

Hossain, M. S., Shaikh, M. A. A., Uddin, M. N., Bashar, M. S., & Ahmed, S. (2023). β-tricalcium phosphate synthesized in organic medium for controlled release drug delivery application in bio-scaffolds. RSC advances, 13(38), 26435-26444.

Kose, N., Otuzbir, A., Peksen, C., Kiremitçi, A., & Dogan, A. (2013). A silver ion-doped calcium phosphate-based ceramic nanopowder-coated prosthesis increased infection resistance. Clinical Orthopaedics and Related Research®, 471(8), 2532-2539.

Mokabber, T., Cao, H. T., Norouzi, N., Van Rijn, P., & Pei, Y. T. (2020). Antimicrobial electrodeposited silver-containing calcium phosphate coatings. ACS applied materials & interfaces, 12(5), 5531-5541.

Nalawati, A. N., Suyatma, N. E., & Wardhana, D. I. (2021). Sintesis Nanopartikel Perak (NPAg) Dengan Bioreduktor Ekstrak Biji Jarak Pagar dan Kajian Aktivitas Antibakterinya. Jurnal Teknologi dan Industri Pangan, 32(2), 98-106.

Padmanabhan, V. P., Sivashanmugam, P., Kulandaivelu, R., Sagadevan, S., Sridevi, B., Govindasamy, R., & Thiruvengadam, M. (2022). Biosynthesised Silver Nanoparticles Loading onto Biphasic Calcium Phosphate for Antibacterial and Bone Tissue Engineering Applications. Antibiotics, 11(12), 1780.

Porsani, N. K., Santos, M. K., Rocha, A. M., Trombini, V., Ana, P. A., Tercini, M. B., & Setz, L. F. G. (2020). Beta-phosphate tricalcium colloidal processing. Ceramics International, 46(3), 2648-2653.

Qing, Y. A., Cheng, L., Li, R., Liu, G., Zhang, Y., Tang, X., ... & Qin, Y. (2018). Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. International journal of nanomedicine, 3311-3327.

Ridwan, R. N., Gusrizal, G., Nurlina, N., & Santosa, S. J. (2019). Sintesis dan Studi Stabilitas Nanopartikel Perak Tertudung Asam Salisilat. Indonesian Journal of Pure and Applied Chemistry, 1(3), 83-90.

Sahayaraj, K., Rajesh, S., & Rathi, J. M. (2012). Silver Nanoparticles Biosynthesis Using Marine Alga Padina Pavonica (Linn.) And Its Microbicidal Activity. Digest Journal of Nanomaterials & Biostructures (DJNB), 7(4).

Selvia, N. (2012). Sintesis dan Karakterisasi β-Tricalcium Phosphate Berbasis Cangkang Kerang Ranga pada Variasi Suhu Sintering. Jurnal Biofisika, 8(1).

Sembiring, S, Br., & Sirait, M. (2023). Sintesis Dan Karakterisasi Β-Tcp (Tri Calcium Phosphate) Dari Batu Kapur Dengan Metode Hidrotermal, Jurnal Hasil Penelitian Bidang Fisika (Einstein), 2407-747x.

Shim, K. S., Kim, H. J., Kim, S. E., & Park, K. (2018). Simple surface biofunctionalization of biphasic calcium phosphates for improving osteogenic activity and bone tissue regeneration. Journal of Industrial and Engineering Chemistry, 68, 220-228.

Singh, R. K., Awasthi, S., Dhayalan, A., Ferreira, J. M. F., & Kannan, S. (2016). Deposition, structure, physical and invitro characteristics of Ag-doped β-Ca3 (PO4) 2/chitosan hybrid composite coatings on Titanium metal. Materials Science and Engineering: C, 62, 692-701.

Spirandeli, B. R., Martins, E. F., Dona, L. R. M., Ribas, R. G., Campos, T. M. B., Esposito, E., & Trichês, E. S. (2023). Synergistic Effect of Incorporation of BG 45S5 and Silver Nanoparticles on β-TCP Scaffolds: Structural Characterization and Evaluation of Antimicrobial Activity and Biocompatibility. Materials Research, 26, e20230137.

Suryadi, Y., Susilowati, D. N., & Made-Samudra, I. (2022). Biosintesis nanopartikel perak (AgNP) menggunakan Bacillus firmus E65 dan aktivitasnya terhadap mikroba patogen. Agrointek: Jurnal Teknologi Industri Pertanian, 16(2), 197-205.

Urrohman, A., Eddy, & Putri, T. P. S. (2023). Pengamatan morfologi β-tcp yang disintesis dari cangkang kerang hijau. Jurnal Kedokteran Gigi Terpadu, 5(2).

Vanaja, M., & Annadurai, G. (2013). Coleus aromaticus leaf extract mediated synthesis of silver nanoparticles and its bactericidal activity. Applied nanoscience, 3, 217-223.

Yanti, S., Arif, M. S., & Yusuf, B. (2021, October). Sintesis Dan Stabilitas Nanopartikel Perak (AgNPs) Menggunakan Trinatrium Sitrat. In Prosiding Seminar Nasional Kimia (pp. 142-146).

Downloads

Published

2024-07-31