A Systematic Exfoliation of Prior Arts About The Use of Natural and Synthesized 1,4-Naphthoquinones Towards Corrosion Inhibition
DOI:
https://doi.org/10.21580/wjc.v7i2.22657Keywords:
1, 4-Naphthoquinones, Corrosion inhibition, Adsorption, Green inhibitors, Synergism, Impermeable film.Abstract
In this review segment, use of natural and synthesized 1,4-naphthoquinones for corrosion inhibition was comprehensively covered based on the past research disclosures. The prior arts were gathered from various research article repositories by the use of search terms like ‘Quinonoids as corrosion inhibitors’ and ‘1,4-Napthoquinones as corrosion inhibitors’ as a part of direct referencing. Additionally, back and cross referencing were also done to ensure the complete collection of prior arts. This work will help the researchers to understand the credibility of 1,4-naphthoquinones as corrosion inhibitors in the global platform. Interestingly, the henna leaf extract (aqueous or solvent mediated) having 2-hydroxy 1,4-naphthoquinone (Lawsone, NQ-12) was the most explored phytochemical under natural or green corrosion inhibitor category. More importantly, a few natural extracts having 1,4-naphthoquinones were widely used as corrosion inhibitors in different mediums. With regard to phytochemical extracts, the collective inhibition ability of many phytochemicals will add to corrosion inhibition process. But in recent years, we can observe the use of specific compounds (synthesized/isolated derivatives of 1,4-naphthoquinone) as alone for the intended corrosion inhibition. Under the context of immediate scope, we have disclosed around 23-26 new molecules having 1,4-naphthoquinone framework for experimental ventures towards corrosion inhibition. This work would favor the use of some new 1,4-naphthoquinones in its pure form towards retarding corrosion with the assistance of supportive molecular framework.
Downloads
References
Abdollahi, R., & Shadizadeh, S. R. (2012). Effect of acid additives on anticorrosive property of henna in regular mud acid. Scientia Iranica, 19(6), 1665–1671. doi:10.1016/j.scient.2012.09.006
Abdollahi, R., & Shadizadeh, S. R. (2013). Experimental investigation of side effect of henna extract as a new and ecofriendly corrosion inhibitor on acid injectivity of calcareous sandstone. Transport in Porous Media, 97(1), 105–118. doi:10.1007/s11242-012-0113-y
Al Hasan, N. H. J., Alaradi, H. J., Al Mansor, Z. A. K., & Al Shadood, A. H. J. (2019). The dual effect of stem extract of Brahmi (Bacopamonnieri) and Henna as a green corrosion inhibitor for low carbon steel in 0.5 M NaOH solution. Case Studies in Construction Materials, 11(e00300), e00300. doi:10.1016/j.cscm.2019.e00300
Al-Sehaibani, H. (2000). Evaluation of extracts of henna leaves as environmentally friendly corrosion inhibitors for metals. Material wissenschaft und Werkstoff technik, 31(12), 1060–1063. doi:10.1002/1521-4052(200012)31:12<1060::aid-mawe1060>3.0.co;2-k
Aminin, D., & Polonik, S. (2020). 1,4-naphthoquinones: Some biological properties and application. Chemical & Pharmaceutical Bulletin, 68(1), 46–57. doi:10.1248/cpb.c19-00911
Angulo-Elizari, E., Henriquez-Figuereo, A., Morán-Serradilla, C., Plano, D., & Sanmartín, C. (2024). Unlocking the potential of 1,4-naphthoquinones: A comprehensive review of their anticancer properties. European Journal of Medicinal Chemistry, 268(116249), 1–32. doi:10.1016/j.ejmech.2024.116249
Ardagh, E. G. R., Roome, R. M. B., & Owens, H. W. (1933). Mechanism of corrosion of iron in sodium chloride solution. Industrial and Engineering Chemistry, 25(10), 1116–1121. doi:10.1021/ie50286a014
Badawi, A. K., & Fahim, I. S. (2021). A critical review on green corrosion inhibitors based on plant extracts: Advances and potential presence in the market. International Journal of Corrosion and Scale Inhibition, 10(4), 1385–1406. doi:10.17675/2305-6894-2021-10-4-2
Bashir I. M., Sulaiman, Z., Usman, B., & Adamu I. M. (2019). Effect of henna leaves on the corrosion inhibition of tin in acidic and alkaline media. World Journal of Applied Chemistry, 4(4), 45-51. doi:10.11648/j.wjac.20190404.11
Batiha, G. E.-S., Teibo, J. O., Shaheen, H. M., Babalola, B. A., Teibo, T. K. A., Al-kuraishy, H. M., Al-Garbeeb, A. I., Alexiou, A., & Papadakis, M. (2024a). Therapeutic potential of Lawsonia inermis Linn: a comprehensive overview. Naunyn-Schmiedeberg’s Archives of Pharmacology, 397(6), 3525–3540. doi:10.1007/s00210-023-02735-8
Batiha, G. E.-S., Teibo, J. O., Shaheen, H. M., Babalola, B. A., Teibo, T. K. A., Al-kuraishy, H. M., … Papadakis, M. (2024b). Therapeutic potential of Lawsonia inermis Linn: a comprehensive overview. Naunyn-Schmiedeberg’s Archives of Pharmacology, 397(6), 3525–3540. doi:10.1007/s00210-023-02735-8
Belkada, R., Hammoutène, D., Tibigui, R., & Hadj-Said, I. (2019). First-principles study of organic molecule for corrosion inhibition. E3S Web of Conferences, 116, 00007. doi:10.1051/e3sconf/201911600007
Bouabdallah, M., & Bounoughaz, M. (2020). The effectiveness of Henna as corrosion inhibitor for lead of battery in the sulphuric acid medium. Algerian Journal of Environmental Science and Technology, 6(2), 1396–1404.
Brixi, N. K., Cherif, R., Bezzar, A., Sail, L., & Aït-Mokhtar, A. (2022). Effectiveness of henna leaves extract and its derivatives as green corrosion inhibitors of reinforcement steel exposed to chlorides. European Journal of Environmental and Civil Engineering, 26(12), 5912–5930. doi:10.1080/19648189.2021.1925159
Buchkevych, I., Kurka, M., Krvavych, A., Monka, N., Novikov, V., & Lubenets, V. Synthesis of new 6,7(N,O)-heterocyclic 1,4-naphthoquinones. (2021). Biointerface Research in Applied Chemistry, 11(6), 13903–13910. doi:10.33263/briac116.1390313910
Buchweishaija, J. (2009). Phytochemicals as green corrosion inhibitors in various corrosive media: A review. Tanzanian Journal of Science, 35, 77–92.
Chaudhari, H. G., & Vashi, R. T. (2016). The study of henna leaves extract as green corrosion inhibitor for mild steel in acetic acid. Revue Des Sciences Fondamentales et Appliquees, 8(2), 280-296. doi:10.4314/jfas.v8i2.8
Chigondo, M., & Chigondo, F. (2016). Recent natural corrosion inhibitors for mild steel: An overview. Journal of Chemistry, 2016, 1–7. doi:10.1155/2016/6208937
Chooto, P., Tappachai, W. A., Duangthong, S., & Manaboot, S. (2020). Corrosion inhibition of copper by thioureas and N, O, S-ligating ring compounds. Portugaliae Electrochimica Acta, 38(5), 343–350. doi:10.4152/pea.202005343
Clovis, S. J., & Jerome, D. (1976). Quinones as corrosion inhibitor in distilling alkanoic acids. U.S. Patent,., US 3960671.
Dananjaya, S. H. S., Edussuriya, M., & Dissanayake, A. S. (2012). Inhibition action of Lawsone on the corrosion of mild steel in acidic media. The Online Journal of Science and Technology TOJST), 2(2), 32–36.
Devi, N. R., Karthiga, N., Keerthana, R., Umasankareswari, T., Krishnaveni, A., Singh, G., & Rajendran, S. (2020). Extracts of leaves as corrosion inhibitors – An overview and corrosion inhibition by an aqueous extract of henna leaves (Lawsonia inermis). International Journal of Corrosion and Scale Inhibition. doi:10.17675/2305-6894-2020-9-4-2
Diab, A., & Abd El-Haleem. (2022). “Corrosion inhibition of copper in acidic solution by using a natural product as henna extract (Lawsonia inermis L). Egyptian Journal of Chemistry, 65(2), 103–111. doi: 10.21608/EJCHEM.2021.76539.3747
Eddy, N. O., Ameh, P., Gimba, C. E., & Ebenso, E. E. (2011). GCMS studies on anogessus leocarpus (Al) gum and their corrosion inhibition potential for mild steel in 0.1 M HCl. International Journal of Electrochemical Science, 6(11), 5815–5829. doi:10.1016/s1452-3981(23)18447-1
Eddy, N., & Okon, P. (2021). Computational and experimental study on Tapinanthus bangwensis leaves as corrosion inhibitor for mild steel and Al in 0.1 M HCl. Current Topics in Electrochemistry, 23, 45–62.
El-Etre, A. Y., Abdallah, M., & El-Tantawy, Z. E. (2005). Corrosion inhibition of some metals using lawsonia extract. Corrosion Science, 47(2), 385–395. doi:10.1016/j.corsci.2004.06.006
El-Shamy, A. M., El-Hadek, M. A., Nassef, A. E., & El-Bindary, R. A. (2020). Optimization of the influencing variables on the corrosion property of steel alloy 4130 in 3.5 wt.% NaCl solution. Journal of Chemistry, 2020, 1–20. doi:10.1155/2020/9212491
Esan, T. O., Oyeneyin, O. E., Olanipekun, A. D., & Ipinloju, N. (2022). Corrosion inhibitive potentials of some amino acid derivatives of 1, 4-naphthoquinone-DFT calculations. Advanced Journal of Chemistry, Section A, 5(4), 263–270. doi:10.22034/AJCA.2022.353882.1321
Fang, Y., Suganthan, B., & Ramasamy, R. P. (2019). Electrochemical characterization of aromatic corrosion inhibitors from plant extracts. Journal of Electroanalytical Chemistry, 840, 74–83. doi:10.1016/j.jelechem.2019.03.052
Fouda, A. S., Hegazi, M. M., & El-Azaly, A. (2019). Henna extract as green corrosion inhibitor for carbon steel in hydrochloric acid solution. International Journal of Electrochemical Science, 14(5), 4668–4682. doi:10.20964/2019.05.47
Gum, M. L., & Nancye, D. K. (1981). Organic amine compositions. U. S. Patent., US 4273937.
Hajar, H. M., Zulkifli, F., Mohd Sabri, M. G., & Wan Nik, W. B. (2016). Protection against corrosion of aluminum alloy in marine environment by Lawsonia inermis. International Journal of Corrosion, 2016, 1–5. doi:10.1155/2016/4891803
Hamdy, A., & El-Gendy, N. S. (2013). Thermodynamic, adsorption and electrochemical studies for corrosion inhibition of carbon steel by henna extract in acid medium. Egyptian Journal of Petroleum, 22(1), 17–25. doi:10.1016/j.ejpe.2012.06.002
Hamrahi, B., Khanlarkhani, A., Madani, S. M., Fattah-alhosseini, A., & Gashti, S. O. (2021). Evaluation of henna extract performance on corrosion inhibition of API 5L steel in H2S-containing medium and DFT quantum computing of its constituents. Metals and Materials International, 27(11), 4463–4476. doi:10.1007/s12540-020-00736-3
Herbert, K. (1970). Composition for inhibiting corrosion containing a hydrazine and a quinone. U. S. Patent,., US 3551349.
Ibrahim, J. (2020). Comparative evaluation of anticorrosion properties of henna leaves powder on Tin in acidic and alkaline media. International Research Journal of Advanced Science, 1(1), 19–26.
Jayakumar R. P., Kaleekal J. V. D., Sreekumar, R., & Parayil M. K. (2014). Investigation on the effect of green inhibitors for corrosion protection of mild steel in 1 M NaOH solution. International Journal of Corrosion, 2014, 1–5. doi:10.1155/2014/487103
Johnsirani, V., Sathiyabama, J., Rajendran, S., & Prabha, A. S. (2012). Inhibitory mechanism of carbon steel corrosion in sea water by an aqueous extract of henna leaves. International Scholarly Research Network (ISRN) Corrosion, 2012, 1–9. doi:10.5402/2012/574321
Khan, J., Rani, A., Aslam, M., Pandey, G., & Nand Pant, B. (2023). A review on the synthesis and application of naphthoquinone-based drugs. Results in Chemistry, 6(101138), 1-17. doi:10.1016/j.rechem.2023.101138
Khoshkhou, Z., Torkghashghaei, M., & Baboukani, A. R. (2018). Corrosion inhibition of henna extract on carbon steel with hybrid coating TMSM-PMMA in HCL solution. Open Journal of Synthesis Theory and Applications, 7(1), 1–16. doi:10.4236/ojsta.2018.71001
Kumar, D., Jain, V., & Rai, B. (2018). Unravelling the mechanisms of corrosion inhibition of iron by henna extract: A density functional theory study. Corrosion Science, 142, 102–109. doi:10.1016/j.corsci.2018.07.011
Kumar, N., Srivastava, A. K., Gautam, P., & Manoj, M. K. (2022). Influence of inhibitors on the corrosion of Al and Al-composites in chloride-containing solutions - A review. Korean Journal of Materials Research, 32(5), 280–286. doi:10.3740/mrsk.2022.32.5.280
Lassoued, K., Seydou, M., Raouafi, F., Larbi, F., Lang, P., & Diawara, B. (2018). DFT study of the adsorption and dissociation of 5-hydroxy-3-butanedithiol-1,4-naphthaquinone (Jug-C4-thiol) on Au(111) surface. Adsorption : Journal of the International Adsorption Society, 24(2), 191–201. doi:10.1007/s10450-018-9932-7
Li, X., Deng, S., Du, G., & Xie, X. (2020). Synergistic inhibition effect of walnut green husk extract and sodium lignosulfonate on the corrosion of cold rolled steel in phosphoric acid solution. Journal of the Taiwan Institute of Chemical Engineers, 114, 263–283. doi:10.1016/j.jtice.2020.09.010
Lrhoul, H., Sekkal, H., & Hammouti, B. (2023). Natural plant extracts as corrosion inhibitors: Thermodynamic’s restrictions”. Moroccan Journal of Chemistry, 11(3), 689–698. doi:10.48317/IMIST.PRSM/morjchem-v11i3.40144
Marzorati, S., Verotta, L., & Trasatti, S. P. (2018). Green corrosion inhibitors from natural sources and biomass wastes. Molecules, 24(1), 48-72. doi:10.3390/molecules24010048
Mccullough, J. G., & Kenneth, B. J. (1985). Corrosion inhibitors for alkanolamine gas treating systems. U. S. Patent., US 4502979.
Miao, H. U., Lizi, W. A., Xiaoqing, M. A., & Xianghong, L. I. (2022). Synergistic inhibition effect of walnut green husk extract and Nd(NO3)3 on Aluminum in HCl solution. Journal of Chinese Society for Corrosion and Protection, 43(3), 471–480. doi: 10.11902/1005.4537.2022.157
Mostert, S., Petzer, A., & Petzer, J. P. (2016). Evaluation of natural and synthetic 1,4‐naphthoquinones as inhibitors of monoamine oxidase. Chemical Biology & Drug Design, 87(5), 737–746. doi:10.1111/cbdd.12708
Motalebi, A., Nasr-Esfahani, M., Ali, R., & Pourriahi, M. (2012). Improvement of corrosion performance of 316L stainless steel via PVTMS/henna thin film. Progress in Natural Science: Communication of State Key Laboratories of China, 22(5), 392–400. doi:10.1016/j.pnsc.2012.10.006
Narenkumar, J., Ananthaselvam, A., Alsalhi, M. S., Devanesan, S., Kadier, A., Kannan, M. M., & Rajasekar, A. (2021). Effect of crude methanolic extract of Lawsonia inermis for anti-biofilm on mild steel 1010 and its effect on corrosion in a re-circulating wastewater system. Journal of King Saud University. Science, 33(8), 101611–101618. doi:10.1016/j.jksus.2021.101611
Nasab, S. G., Semnani, A., Yazd, M. J., Kahkesh, H., Rabiee, N., Bagherzadeh, M., & Rabiee, M. (2019). Plants as corrosion inhibitors in different corrosive environments. In Synthesis Lectures on Mechanical Engineering (pp. 9–39). Cham: Springer International Publishing.
Navarro-Tovar, G., Vega-Rodríguez, S., Leyva, E., Loredo-Carrillo, S., de Loera, D., & López-López, L. I. (2023). The relevance and insights on 1,4-naphthoquinones as antimicrobial and antitumoral molecules: A systematic review. Pharmaceuticals, 16(4), 496–530. doi:10.3390/ph16040496
Nik, W. B. W., Zulkifli, F., Rosliza, R., & Rahman, M. M. (2011). Lawsonia Inermis as green inhibitor for corrosion protection of aluminium alloy. International Journal of Modern Engineering Research (IJMER), 1, 723–728.
Nik, W. B. W., Zulkifli, F., Sulaiman, O., Samo, K. B., & Rosliza, R. (2012). Study of henna (Lawsonia inermis) as natural corrosion inhibitor for aluminum alloy in seawater. In 1st International Conference on Mechanical Engineering Research 2011 (ICMER2011)-IOP Conference Series-Materials Science and Engineering (pp. 1–7).
Noack, G. M. (1977). Catalyzed hydrazine compound corrosion inhibiting composition containing a quinone compound and a complex of metal salt and an ortho aromatic compound. U. S. Patent., US 4026664.
Odarczenko, M., Thakare, D., Li, W., Yang, K., Tang, S., Venkateswaran, S. P., Sottos, N. R., & White, S. R. (2018). Self-protecting epoxy coatings with anticorrosion microcapsules. ACS Omega, 3(10), 14157–14164. doi:10.1021/acsomega.8b01950
Odozi, N., Festus, C., & Sorbari, K. (2022). Adsorption and anticorrosion properties of mild-steel treated 2-[(3-hydroxylpyridin-2-yl) amino]naphthalene-1,4-Dione Schiff base in 1m-HCl solution: Synthesis, experimental and computational studies. Fudma Journal of Sciences, 6(2), 144–155. doi:10.33003/fjs-2022-0602-718
Okore, G., Ejiogu, B., Okeke, P., Amanze, K., Okore, S., Oguzie, E., & Enyoh, C. E. (2024). Lawsonia inermis as an active corrosion inhibitor for mild steel in hydrochloric acid. Applied Sciences, 14(15), 6392. doi:10.3390/app14156392
Olajire, A. A. (2017). Corrosion inhibition of offshore oil and gas production facilities using organic compound inhibitors-A review. Journal of Molecular Liquids, 248, 775–808. doi:10.1016/j.molliq.2017.10.097
Ostovari, A., Hoseinieh, S. M., Peikari, M., Shadizadeh, S. R., & Hashemi, S. J. (2009). Corrosion inhibition of mild steel in 1M HCl solution by henna extract: A comparative study of the inhibition by henna and its constituents (Lawsone, Gallic acid, α-d-Glucose and Tannic acid). Corrosion Science, 51(9), 1935–1949. doi:10.1016/j.corsci.2009.05.024
Panchal, J., Shah, D., Patel, R., Shah, S., Prajapati, M., & Shah, M. (2021). Comprehensive review and critical data analysis on corrosion and emphasizing on green Eco-friendly corrosion inhibitors for oil and gas industries. Journal of Bio- and Tribo-Corrosion, 7(3). doi:10.1007/s40735-021-00540-5
Pandian, K., Vivekananthan, S., Thiruvadigal, D. J., & Sagadevan, S. (2018). Natural green inhibitors-versatile materials for corrosion inhibition of steel structures. Innovations in Corrosion and Materials Science (Formerly Recent Patents on Corrosion Science), 7(2). doi:10.2174/2352094907666171016125111
Patni, N., Agarwal, S., & Shah, P. (2013). Greener approach towards corrosion inhibition. Chinese Journal of Engineering, 2013, 1–10. doi:10.1155/2013/784186
Pourriahi, M., Nasr-Esfahani, M., & Motalebi, A. (2014). Effect of henna and rosemary extracts on the corrosion of 304L stainless steel in 3.5% NaCl solution. Surface Engineering and Applied Electrochemistry, 50(6), 525–533. doi:10.3103/s1068375514060088
Raja, P. B., & Sethuraman, M. G. (2008). Natural products as corrosion inhibitor for metals in corrosive media. A review. Materials Letters, 62(1), 113–116. doi:10.1016/j.matlet.2007.04.079
Rajendran, S., Agastha, M., Devi, R. B., Devi, B. S., Rajam, K., & Jeyasundari, J. (2009). Corrosion inhibition by an aqueous extract of Henna leaves (Lawsonia Inermis L). Zastita Materijala, 50(2), 77–84.
Rani, B. E. A., & Basu, B. B. J. (2012). Green inhibitors for corrosion protection of metals and alloys: An overview. International Journal of Corrosion, 2012, 1–15. doi:10.1155/2012/380217
Rehan, H. H. (2003). Corrosion Control by water‐soluble extracts from leaves of economic plants. Material wissenschaft und Werkstoff technik, 34(2), 232–237. doi:10.1002/mawe.200390034
S. Bilgic. (2021). Plant extracts as corrosion inhibitors for mild steel in HCl media – review I. International Journal of Corrosion and Scale Inhibition, 10(1), 145–175. doi:10.17675/2305-6894-2021-10-1-9
Salim, R., Azzaoui, K., Loukili, E. H., & Ech-Chihbi, E. (2022). Green corrosion inhibitors of carbon steel in acid medium: Plant extracts. Journal of Applied Science and Environmental Studies, 5(2), 75–86. doi: 10.48393/IMIST.PRSM/jases-v5i2.45594
Sangeetha, M., Rajendran, S., Sathiyabama, J., & Krishnaveni, A. (2013). Inhibition of corrosion of aluminium and its alloys by extracts of green inhibitors. Portugaliae Electrochimica Acta, 31(1), 41–52. doi:10.4152/pea.201301041
Sanjay, S. S., Shashiprabha, Shridhara, K., Nagarajan, K., Sivaramakrishnan, H., & Arun, B. (2022). Synthesis, characterization, antimalarial and anticancer activities of few new amino analogues of 1,4-naphthoquinone. Asian Journal of Organic & Medicinal Chemistry, 7(1), 123–130. doi:10.14233/ajomc.2022.ajomc-p372
Selvaraj, F. S. S., Samuel, M., Karuppiah, A. K., & Raman, N. (2022). Transition metal complexes incorporating lawsone: a review. Journal of Coordination Chemistry, 75(19–24), 2509–2532. doi:10.1080/00958972.2022.2142908
Serbout, J., Touzani, R., Bouklah, M., & Hammouti, B. An insight on the corrosion inhibition of mild steel in aggressive medium by henna extract. (2021). International Journal of Corrosion and Scale Inhibition, 10(3), 1042–1068. doi:10.17675/2305-6894-2021-10-3-14
Sexsmith, D. R., & Bruce, L. L. (1983). Corrosion protection package. U.S. Patent., US 4386008.
Shankar, M. G., & Patil, P. R. (2015). Henna Corrosion Inhibitor for Acid in a Well. U. S. Patent., US20150159077 A1
Sharma, S., Ganjoo, R., Thakur, A., & Kumar, A. (2023). Electrochemical characterization and surface morphology techniques for corrosion inhibition-A review. Chemical Engineering Communications, 210(3), 412–447. doi:10.1080/00986445.2022.2039913
Sharma, S., Solanki, A. S., & Sharma, S. K. (2024). Anticorrosive action of eco-friendly plant extracts on mild steel in different concentrations of hydrochloric acid. Corrosion Reviews, 42(2), 185–201. doi:10.1515/corrrev-2023-0053
Shashirekha, K., Shubrajyotsna, A., & Praveen, B. M. (2022). Eco-friendly corrosion inhibitors on mild steel in acidic medium. International Research Journal of Engineering and Technology, 9, 2395–2372.
Sherif, E. M., & Park, S.-M. (2006). Effects of 1,4-naphthoquinone on aluminum corrosion in 0.50M sodium chloride solutions. Electrochimica Acta, 51(7), 1313–1321. doi:10.1016/j.electacta.2005.06.018
Siddekha, A. (2022). Aqueous Plant extract of Henna leaves (Lawsone inermis) as green corrosion inhibitors: A prescreening investigation for mild steel in a simulated environment. International Advanced Research Journal in Science, Engineering and Technology, 9(2), 373–380. doi:10.17148/iarjset.2022.9255
Slavcheva, E., Sokolova, E., & Raicheva, S. (1993a). Corrosion inhibition of mild steel in neutral solutions by organic compounds with quinonoid structure. British Corrosion Journal, 28(2), 125–129. doi:10.1179/bcj.1993.28.2.125
Slavcheva, E., Sokolova, E., & Raicheva, S. (1993b). Temperature and concentration dependence of the activity of quinones of presumed inhibiting action. Journal of Electroanalytical Chemistry, 360(1–2), 271–282. doi:10.1016/0022-0728(93)87019-r
Stoyanova, A., & Slavcheva, E. (2011). Effect of the molecular structure of some quinones on their corrosion inhibiting action. Materials and Corrosion, 62(9), 872–877. doi:10.1002/maco.200905579
Vashi, R. T. (2024). Henna (Lawsonia inermis L.) as a green inhibitor for prevention of metals and alloys from corrosion-A Review. Research Journal of Chemical Sciences, 14(1), 45–52.
Vashi, R. T., & Zele, S. A. (2021). Green corrosion inhibitors for zinc-An overview. International Journal of Advances in Engineering and Management (IJAEM), 2(12), 130–142. doi:10.35629/5252-0212130142
Vaszilcsin, N., Kellenberger, A., Dan, M. L., Duca, D. A., & Ordodi, V. L. (2023). Efficiency of expired drugs used as corrosion inhibitors: A review. Materials, 16(16), 5555–5579. doi:10.3390/ma16165555
Verma, C., Ebenso, E. E., & Quraishi, M. A. (2017). Corrosion inhibitors for ferrous and non-ferrous metals and alloys in ionic sodium chloride solutions: A review. Journal of Molecular Liquids, 248, 927–942. doi:10.1016/j.molliq.2017.10.094
Verma, C., Ebenso, E. E., Bahadur, I., & Quraishi, M. A. (2018). An overview on plant extracts as environmental sustainable and green corrosion inhibitors for metals and alloys in aggressive corrosive media. Journal of Molecular Liquids, 266, 577–590. doi:10.1016/j.molliq.2018.06.110
Verma, C., Kumar, A., & Thakur, A. (2024). Phytochemistry in Corrosion Science: Plant Extracts and Phytochemicals as Corrosion Inhibitors. Boca Raton: CRC Press.
Wei, H., Heidarshenas, B., Zhou, L., Hussain, G., Li, Q., & Ostrikov, K. (2020). Green inhibitors for steel corrosion in acidic environment: state of art. Materials Today Sustainability, 10(2), 100044. doi:10.1016/j.mtsust.2020.100044
Westphal, R., de Souza Pina, J. W., Franco, J. P., Ribeiro, J., Delarmelina, M., Fiorot, R. G., de-Mesquita C. J. W., & Greco, S. J. (2020). Synthesis and evaluation of corrosion inhibiting activity of new molecular hybrids containing the morpholine, 1,4-naphthoquinone, 7-chloroquinoline and 1,3,5-triazine cores. Advances in Chemical Engineering and Science, 10(4), 378–398. doi:10.4236/aces.2020.104024
Widhalm, J. R., & Rhodes, D. (2016). Biosynthesis and molecular actions of specialized 1,4-naphthoquinone natural products produced by horticultural plants. Horticulture Research, 3(1), 1–17. doi:10.1038/hortres.2016.46
Wodi, T. C., Festus, C., & Nlemonwu, E. (2022). Anti-corrosive potentials of naphtho-quinone/naphtha-aldehyde Schiff bases for mild steel in hcl medium: Synthesis, characterization and dft studies. Journal of Chemical Society of Nigeria, 47(5), 1075–1098. doi:10.46602/jcsn.v47i5.811
Zhao, W., Li, F., Lv, X., Chang, J., Shen, S., Dai, P., Xia, Y., & Cao, Z. (2023). Research progress of organic corrosion inhibitors in metal corrosion protection. Crystals, 13(9), 1329–1354. doi:10.3390/cryst13091329
Zulkifli, F., Ali, N., Yusof, M. S. M., Khairul, W. M., Rahamathullah, R., Isa, M. I. N., & Wan Nik, W. B. (2017). The effect of concentration of Lawsonia inermis as a corrosion inhibitor for aluminum alloy in seawater. Advances in Physical Chemistry, 2017, 1–12. doi:10.1155/2017/8521623
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Walisongo Journal of Chemistry
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The copyright of the received article shall be assigned to the publisher of the journal. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to published articles. Therefore, the author must submit a statement of the Copyright Transfer Agreement.*)
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
In line with the license, authors and any users (readers and other researchers) are allowed to share and adapt the material. In addition, the material must be given appropriate credit, provided with a link to the license, and indicated if changes were made. If authors remix, transform or build upon the material, authors must distribute their contributions under the same license as the original.
*) Authors whose articles are accepted for publication will receive confirmation via email to send a Copyright Transfer Agreement.