Biosynthesis of Silver Microparticles Using Spondias Dulcis Fruit Peel Extract and Its Antibacterial Activity
DOI:
https://doi.org/10.21580/wjc.v7i2.22996Keywords:
Antibacterial, Spondias dulcis, Silver ParticleAbstract
In recent decades, the overuse and misuse of antibiotics, along with various social and economic factors, have accelerated the spread of antibiotic-resistant bacteria, including Klebsiella pneumoniae and Pseudomonas aeruginosa, both of which are Gram-negative pathogenic bacteria. Silver particles (AgPs) have garnered significant research interest over the years due to their diverse biological activities, particularly their antibacterial properties. The green synthesis method for silver particles involves synthesizing silver metal particles using natural materials derived from organisms such as plants, resulting in particles that are less harmful to human cells but highly toxic to pathogenic bacteria. Kedondong (Spondias dulcis) is a tropical fruit widely grown in South and Southeast Asia. The peels of this fruit often become organic waste with limited utility. To explore the potential of kedondong fruit peels, this study investigated the synthesis of silver particles using their extract. The ethanolic extract of kedondong fruit peels was analyzed using LC-MS/MS-QTOF, identifying 5 alkaloids, 21 flavonoids, and 17 terpenoid compounds. The total flavonoid and phenolic contents of the extract were determined to be 1.8918 and 12.8104 mg/g of extract, respectively. The silver particles synthesized in this study had an average size of 4641.97 micrometers and a zeta potential of 40.2 mV, as determined by PSA, and were confirmed as silver particles through P-XRD phase analysis. These silver particles exhibited strong antibacterial activity against P. aeruginosa, with an inhibition zone diameter of 19.43 mm, and moderate activity against K. pneumoniae, with an inhibition zone diameter of 11.50 mm, at a suspension concentration of 10 mg/mL. Notably, the P. aeruginosa strain used in this experiment was resistant to the antibiotic amoxicillin.
Downloads
References
Almatroudi, A., 2020. Silver nanoparticles: Synthesis, characterisation and biomedical applications. Open Life Sci. https://doi.org/10.1515/biol-2020-0094
Asmathunisha, N., Kathiresan, K., 2013. A review on biosynthesis of nanoparticles by marine organisms. Colloids Surf B Biointerfaces 103, 283–287. https://doi.org/10.1016/j.colsurfb.2012.10.030
Bruna, T., Maldonado-Bravo, F., Jara, P., Caro, N., 2021. Silver nanoparticles and their antibacterial applications. Int J Mol Sci 22. https://doi.org/10.3390/ijms22137202
Castro, L., Blázquez, M.L., González, F., Muñoz, J.Á., Ballester, A., 2015. Biosynthesis of silver and platinum nanoparticles using orange peel extract: Characterisation and applications. IET Nanobiotechnol. https://doi.org/10.1049/iet-nbt.2014.0063
Chellaiah, E.R., 2018. Cadmium (heavy metals) bioremediation by Pseudomonas aeruginosa: a minireview. Appl Water Sci 8. https://doi.org/10.1007/s13201-018-0796-5
Clarissa, C., Claudia, G., Putri, M.T., Handoyo, C.C., Firdayanti, S.A., Milka, M., Kiyat, W. El, 2019. Review: Ekstraksi Pektin dari Limbah Kulit Kedondong (Spondias dulcis) dan Pemanfaatannya sebagai Edible Coating pada Buah. IJCA (Indonesian Journal of Chemical Analysis) 2. https://doi.org/10.20885/ijca.vol2.iss1.art1
Coblenz, A., Wolf, K., 1994. The role of glutathione biosynthesis in heavy metal resistance in the fission yeast Schizosaccharomyces pombe. FEMS Microbiol Rev 14, 303–308. https://doi.org/10.1111/j.1574-6976.1994.tb00103.x
Dakal, T.C., Kumar, A., Majumdar, R.S., Yadav, V., 2016. Mechanistic basis of antimicrobial actions of silver nanoparticles. Front Microbiol 7.
Almatroudi, A., 2020. Silver nanoparticles: Synthesis, characterisation and biomedical applications. Open Life Sci. https://doi.org/10.1515/biol-2020-0094
Asmathunisha, N., Kathiresan, K., 2013. A review on biosynthesis of nanoparticles by marine organisms. Colloids Surf B Biointerfaces 103, 283–287. https://doi.org/10.1016/j.colsurfb.2012.10.030
Bruna, T., Maldonado-Bravo, F., Jara, P., Caro, N., 2021. Silver nanoparticles and their antibacterial applications. Int J Mol Sci 22. https://doi.org/10.3390/ijms22137202
Castro, L., Blázquez, M.L., González, F., Muñoz, J.Á., Ballester, A., 2015. Biosynthesis of silver and platinum nanoparticles using orange peel extract: Characterisation and applications. IET Nanobiotechnol. https://doi.org/10.1049/iet-nbt.2014.0063
Chellaiah, E.R., 2018. Cadmium (heavy metals) bioremediation by Pseudomonas aeruginosa: a minireview. Appl Water Sci 8. https://doi.org/10.1007/s13201-018-0796-5
Clarissa, C., Claudia, G., Putri, M.T., Handoyo, C.C., Firdayanti, S.A., Milka, M., Kiyat, W. El, 2019. Review: Ekstraksi Pektin dari Limbah Kulit Kedondong (Spondias dulcis) dan Pemanfaatannya sebagai Edible Coating pada Buah. IJCA (Indonesian Journal of Chemical Analysis) 2. https://doi.org/10.20885/ijca.vol2.iss1.art1
Coblenz, A., Wolf, K., 1994. The role of glutathione biosynthesis in heavy metal resistance in the fission yeast Schizosaccharomyces pombe. FEMS Microbiol Rev 14, 303–308. https://doi.org/10.1111/j.1574-6976.1994.tb00103.x
Dakal, T.C., Kumar, A., Majumdar, R.S., Yadav, V., 2016. Mechanistic basis of antimicrobial actions of silver nanoparticles. Front Microbiol 7. https://doi.org/10.3389/fmicb.2016.01831
Elamawi, R.M., Al-Harbi, R.E., Hendi, A.A., 2018. Biosynthesis and characterization of silver nanoparticles using Trichoderma longibrachiatum and their effect on phytopathogenic fungi. Egypt J Biol Pest Control 28. https://doi.org/10.1186/s41938-018-0028-1
Elemike, E.E., Fayemi, O.E., Ekennia, A.C., Onwudiwe, D.C., Ebenso, E.E., 2017. Silver Nanoparticles Mediated by Costus afer Leaf Extract: Synthesis, Antibacterial, Antioxidant and Electrochemical Properties. Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry 22, 701. https://doi.org/10.3390/MOLECULES22050701
Gurunathan, S., Jeong, J.-K., Han, J.W., Zhang, X.-F., Park, J.H., Kim, J.-H., 2015. Multidimensional effects of biologically synthesized silver nanoparticles in Helicobacter pylori, Helicobacter felis, and human lung (L132) and lung carcinoma A549 cells. Nanoscale Res Lett 10, 35. https://doi.org/10.1186/s11671-015-0747-0
Gurunathan, S., Kalishwaralal, K., Vaidyanathan, R., Venkataraman, D., Pandian, S.R.K., Muniyandi, J., Hariharan, N., Eom, S.H., 2009. Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids Surf B Biointerfaces 74, 328–335. https://doi.org/10.1016/J.COLSURFB.2009.07.048
Harada, H., Misawa, N., 2009. Novel approaches and achievements in biosynthesis of functional isoprenoids in Escherichia coli. Appl Microbiol Biotechnol 84, 1021–1031. https://doi.org/10.1007/s00253-009-2166-6
Irawati, W., Tahya, C.Y., Greisnaningsi, 2022. Pantoea agglomerans, Klebsiella pneumoniae, and Shigella flexneri isolated from the Cisadane River as multiresistant bacteria to copper and dyes. Indones J Biotechnol 27, 176–186. https://doi.org/10.22146/ijbiotech.66103
Ismail, G.A., El-Sheekh, M.M., Samy, R.M., Gheda, S.F., 2021. Antimicrobial, Antioxidant, and Antiviral Activities of Biosynthesized Silver Nanoparticles by Phycobiliprotein Crude Extract of the Cyanobacteria Spirulina platensis and Nostoc linckia. Bionanoscience 11, 355–370. https://doi.org/10.1007/s12668-021-00828-3
Jun, B.-H., Noh, M.S., Kim, J., Kim, G., Kang, H., Kim, M.-S., Seo, Y.-T., Baek, J., Kim, J.-H., Park, J., Kim, S., Kim, Y.-K., Hyeon, T., Cho, M.-H., Jeong, D.H., Lee, Y.-S., 2010. Multifunctional silver-embedded magnetic nanoparticles as SERS nanoprobes and their applications. Small 6, 119–125. https://doi.org/10.1002/smll.200901459
Kumari G, V., S, A., 2016. Synthesis and Characterization of Pectin Functionalized Bimetallic Silver/ Gold Nanoparticles for Photodynamic Applications. J Phys Chem Biophys 6. https://doi.org/10.4172/2161-0398.1000221
Lu, J., Wang, Y., Jin, M., Yuan, Z., Bond, P., Guo, J., 2020. Both silver ions and silver nanoparticles facilitate the horizontal transfer of plasmid-mediated antibiotic resistance genes. Water Res 169, 115229. https://doi.org/https://doi.org/10.1016/j.watres.2019.115229
Mancuso, G., Midiri, A., Gerace, E., Biondo, C., 2021. Bacterial antibiotic resistance: the most critical pathogens. Pathogens. https://doi.org/10.3390/pathogens10101310
Mathur, P., Jha, S., Ramteke, S., Jain, N.K., 2018. Pharmaceutical aspects of silver nanoparticles. Artif Cells Nanomed Biotechnol. https://doi.org/10.1080/21691401.2017.1414825
Ndikau, M., Noah, N.M., Andala, D.M., Masika, E., 2017. Green Synthesis and Characterization of Silver Nanoparticles Using Citrullus lanatus Fruit Rind Extract. Int J Anal Chem 2017. https://doi.org/10.1155/2017/8108504
Pallavicini, P., Arciola, C.R., Bertoglio, F., Curtosi, S., Dacarro, G., D’Agostino, A., Ferrari, F., Merli, D., Milanese, C., Rossi, S., Taglietti, A., Tenci, M., Visai, L., 2017. Silver nanoparticles synthesized and coated with pectin: An ideal compromise for anti-bacterial and anti-biofilm action combined with wound-healing properties. J Colloid Interface Sci 498, 271–281. https://doi.org/10.1016/j.jcis.2017.03.062
Rakhmawati, R., Yunianta, Y., 2015. Pengaruh Proporsi Buah : Air dan Lama Pemanasan Terhadap Aktivitas Antioksidan Sari Buah Kedondong (Spondias dulcis). Jurnal Pangan dan Agroindustri 3.
Rautela, A., Rani, J., Debnath (Das), M., 2019. Green synthesis of silver nanoparticles from Tectona grandis seeds extract: characterization and mechanism of antimicrobial action on different microorganisms. J Anal Sci Technol 10. https://doi.org/10.1186/s40543-018-0163-z
Tahya, C.Y., Karnelasatri, K., Irawati, W., Munthe, S.W.N., 2024. Silver Nanoparticle Biosynthesis using Distimake Vitifolius Extract Silver Nanoparticle Biosynthesis using Distimake vitifolius Extract for Enhancement of Antibacterial and Antioxidant Activity. https://doi.org/10.20884/1.jm.2024.19.2.10295
Tahya, C.Y., Ratnaningsih, E., 2015. Cloning and Sequencing of Haloacid Dehalogenase Gene from Klebsiella Pneumoniae ITB1. Procedia Chem 16, 121–128. https://doi.org/10.1016/j.proche.2015.12.039
Urnukhsaikhan, E., Bold, B.-E., Gunbileg, A., Sukhbaatar, N., Mishig-Ochir, T., 2021. Antibacterial activity and characteristics of silver nanoparticles biosynthesized from Carduus crispus. Sci Rep 11, 21047. https://doi.org/10.1038/s41598-021-00520-2
Vanaja, M., Annadurai, G., 2013. Coleus aromaticus leaf extract mediated synthesis of silver nanoparticles and its bactericidal activity. Applied Nanoscience (Switzerland) 3, 217–223. https://doi.org/10.1007/s13204-012-0121-9
Varela, M.F., Stephen, J., Lekshmi, M., Ojha, M., Wenzel, N., Sanford, L.M., Hernandez, A.J., Parvathi, A., Kumar, S.H., 2021. Bacterial resistance to antimicrobial agents. Antibiotics. https://doi.org/10.3390/antibiotics10050593
Zhang, W., Zhao, X.J., Jiang, Y., Zhou, Z., 2017. Citrus pectin derived silver nanoparticles and their antibacterial activity. Inorganic and Nano-Metal Chemistry 47, 15–20. https://doi.org/10.1080/15533174.2015.1137073
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Walisongo Journal of Chemistry
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The copyright of the received article shall be assigned to the publisher of the journal. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to published articles. Therefore, the author must submit a statement of the Copyright Transfer Agreement.*)
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
In line with the license, authors and any users (readers and other researchers) are allowed to share and adapt the material. In addition, the material must be given appropriate credit, provided with a link to the license, and indicated if changes were made. If authors remix, transform or build upon the material, authors must distribute their contributions under the same license as the original.
*) Authors whose articles are accepted for publication will receive confirmation via email to send a Copyright Transfer Agreement.