ADSORPTION KINETICS OF METHYL ORANGE ON SILICA DERIVED FROM GAMALAMA VOLCANIC SOIL

Authors

  • Indra Cipta Chemistry Education Department, Faculty of Teacher Training and Education, Universitas Khairun, Indonesia
  • Nur Jannah Baturante Chemistry Education Department, Faculty of Teacher Training and Education, Universitas Khairun, Indonesia
  • Hernawan Hernawan Research Center for Food Technology and Processing, National Research and Innovations Agency, Indonesia
  • Yunita Pare Rombe Chemistry Education Department, Faculty of Teacher Training and Education, Universitas Papua, Indonesia
  • Siti Mahmudha Industrial Chemical Engineering Technology, Department of Mechanical Engineering, Politeknik Negeri Medan, Medan, Indonesia

DOI:

https://doi.org/10.21580/wjc.v8i1.26066

Keywords:

Adsorption kinetics, Gamalama Volcanic Soil, Methyl Orange, Pseudo-Second-Order Model, Silica Gel

Abstract

Silica gel was successfully synthesized from Gamalama volcanic soil using the sol-gel method and applied as an adsorbent to remove methyl orange (MO) dye. The synthesis process involved treating 20 grams of volcanic soil with 2 M HCl under stirring for 3 hours, followed by a 12-hour soaking period. The solid residue was subsequently filtered, dried, and reacted with 7 M NaOH for 2 hours. The resulting filtrate was neutralized through repeated washing with distilled water, and silica gel formation was achieved by titration with 2 M HCl until a final pH of approximately 3–4 was reached. The synthesized silica was evaluated for its adsorption performance against methyl orange, with optimal conditions identified at pH 4, a contact time of 5 hours, and an adsorbent dosage of 30 mg. UV-Vis analysis showed that the synthesized silica exhibited a higher adsorption capacity (6.7%) compared to raw Gamalama volcanic soil. Kinetic studies indicated that the adsorption process followed a pseudo-second-order model, suggesting chemisorption as the dominant mechanism. The rate constant (k₂) for the synthesized silica was 0.09 M⁻¹·h⁻¹, compared to 0.077 M⁻¹·h⁻¹ for the raw volcanic soil. This indicates that the synthesized silica adsorbed MO more rapidly, likely due to its higher purity and greater availability of active sites. The slightly lower k₂ observed in raw volcanic soil might be attributed to the presence of clay minerals such as halloysite and allophane, which possess negative surface charges at neutral to alkaline pH levels, leading to electrostatic repulsion with the negatively charged MO anions. Silica gel synthesized from Gamalama volcanic soil demonstrates promising potential as an eco-friendly adsorbent for dye removal from aqueous solutions.

Downloads

Download data is not yet available.

References

Agarwala, R., & Mulky, L. (2023). Adsorption of Dyes from Wastewater: A Comprehensive Review. ChemBioEng Reviews, 10(3), 326–335. https://doi.org/10.1002/CBEN.202200011

Ameta, R., Solanki, M. S., Benjamin, S., & Ameta, S. C. (2018). Photocatalysis. In Advanced Oxidation Processes for Wastewater Treatment: Emerging Green Chemical Technology (pp. 135–175). Academic Press. https://doi.org/10.1016/B978-0-12-810499-6.00006-1

Anastopoulos, I., Mittal, A., Usman, M., Mittal, J., Yu, G., Núñez-Delgado, A., & Kornaros, M. (2018). A review on halloysite-based adsorbents to remove pollutants in water and wastewater. In Journal of Molecular Liquids (Vol. 269, pp. 855–868). Elsevier B.V. https://doi.org/10.1016/j.molliq.2018.08.104

A’yuni, Q., Widati, A. A., Tamyiz, M., Hartati, H., Utami, R. Y., Huri, M. A. M., & Pasaribu, A. D. S. (2024). Development of silica gel from Lapindo volcanic mud as fluorescent fingerprint powder based on methyl orange. South African Journal of Chemical Engineering, 50, 143–151. https://doi.org/10.1016/j.sajce.2024.08.002

Bonelli, B., Zanzottera, C., Armandi, M., Esposito, S., & Garrone, E. (2013). IR spectroscopic study of the acidic properties of alumino-silicate single-walled nanotubes of the imogolite type. Catalysis Today, 218–219, 3–9. https://doi.org/10.1016/j.cattod.2013.02.004

Boushara, R.S.H., Johari, K., & Musfirah Mustafa, N. (2024). Adsorption of anionic methyl orange dye on hybrid spherical silica in fixed-bed column. Materials Today: Proceedings, 97, 30–35. https://doi.org/10.1016/j.matpr.2023.08.250

Calabi-Floody, M., Bendall, J. S., Jara, A. A., Welland, M. E., Theng, B. K. G., Rumpel, C., & Mora, M. de la L. (2011). Nanoclays from an Andisol: Extraction, properties and carbon stabilization. Geoderma, 161(3–4), 159–167. https://doi.org/10.1016/j.geoderma.2010.12.013

Chong, M. Y., & Tam, Y. J. (2020). Bioremediation of dyes using coconut parts via adsorption: a review. SN Applied Sciences, 2(2), 1–16. https://doi.org/10.1007/S42452-020-1978-Y/FIGURES/6

Choo, H. S., Lau, L. C., Mohamed, A. R., & Lee, K. T. (2013). Hydrogen sulfide adsorption by alkaline impregnated coconut shell activated carbon. Journal of Engineering Science and Technology, 8(6), 741–753.

Cipta, I., Febiyanto, F., Syoufian, A., & Kartini, I. (2022). Identification and Characterization of Nanoclays in Gamalama Volcanic Soil of Northern Maluku. Clays and Clay Minerals, 70(3), 438–449. https://doi.org/10.1007/s42860-022-00190-9

Da̧browski, A., Hubicki, Z., Podkościelny, P., & Robens, E. (2004). Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere, 56(2), 91–106. https://doi.org/10.1016/j.chemosphere.2004.03.006

Dhaneswara, D., Fatriansyah, J. F., Situmorang, F. W., & Haqoh, A. N. (2020). Synthesis of Amorphous Silica from Rice Husk Ash: Comparing HCl and CH3COOH Acidification Methods and Various Alkaline Concentrations. International Journal of Technology, 11(1), 200–208. https://doi.org/10.14716/ijtech.v11i1.3335

Djomgoue, P., & Njopwouo, D. (2013). FT-IR Spectroscopy Applied for Surface Clays Characterization. Journal of Surface Engineered Materials and Advanced Technology, 03(04), 275–282. https://doi.org/10.4236/jsemat.2013.34037

El Foulani, A. A., Tarhouchi, S., Hammoudan, I., Saddik, R., Abdullah Alzahrani, A. Y., & Tighadouini, S. (2025). A novel hydrazide-modified silica gel as a promising material for adsorption of methyl orange from aqueous solutions: Experiments and theoretical insights. Results in Surfaces and Interfaces, 18. https://doi.org/10.1016/j.rsurfi.2025.100455

Foo, K. Y., & Hameed, B. H. (2012). An overview of dye removal via activated carbon adsorption process. New Pub: Balaban, 19(1–3), 255–274. https://doi.org/10.5004/DWT.2010.1214

Frydel, L., Słomkiewicz, P. M., & Szczepanik, B. (2023). The adsorption studies of phenol derivatives on halloysite-carbon adsorbents by inverse liquid chromatography. Adsorption. https://doi.org/10.1007/s10450-023-00396-w

Haider, J. Bin, Haque, Md. I., Hoque, M., Hossen, Md. M., Mottakin, M., Khaleque, Md. A., Johir, M. A. H., Zhou, J. L., Ahmed, M. B., & Zargar, M. (2022b). Efficient extraction of silica from openly burned rice husk ash as adsorbent for dye removal. Journal of Cleaner Production, 380, 135121. https://doi.org/10.1016/J.JCLEPRO.2022.135121

Han, M. H., & Yun, Y. S. (2007). Mechanistic understanding and performance enhancement of biosorption of reactive dyestuffs by the waste biomass generated from amino acid fermentation process. Biochemical Engineering Journal, 36(1), 2–7. https://doi.org/10.1016/j.bej.2006.06.010

Hanafi., M., F., & Sapawe, N. (2020). A review on the water problem associate with organic pollutants derived from phenol, methyl orange, and remazol brilliant blue dyes. Materials Today: Proceedings, 31(2020), A141–A150. https://doi.org/10.1016/j.matpr.2021.01.258

Haque, F. Z., Ali, V., & Husain, M. (2013). Synthesis and spectroscopic characterization of Nile Blue doped silica gel rods. Optik, 124(20), 4287–4291. https://doi.org/10.1016/J.IJLEO.2013.01.043

Huang, Y., Li, S., Chen, J., Zhang, X., & Chen, Y. (2014). Adsorption of Pb(II) on mesoporous activated carbons fabricated from water hyacinth using H 3 PO 4 activation: Adsorption capacity, kinetic and isotherm studies. Applied Surface Science, 293, 160–168. https://doi.org/10.1016/j.apsusc.2013.12.123

Konicki, W., Cendrowski, K., Bazarko, G., & Mijowska, E. (2015). Study on efficient removal of anionic, cationic and nonionic dyes from aqueous solutions by means of mesoporous carbon nanospheres with empty cavity. Chemical Engineering Research and Design, 94(August), 242–253. https://doi.org/10.1016/j.cherd.2014.08.006

Li, Z., Sellaoui, L., Gueddida, S., Dotto, G. L., Ben Lamine, A., Bonilla-Petriciolet, A., & Badawi, M. (2020). Adsorption of methylene blue on silica nanoparticles: Modelling analysis of the adsorption mechanism via a double layer model. Journal of Molecular Liquids, 319. https://doi.org/10.1016/j.molliq.2020.114348

Luo, P., Zhao, Y., Zhang, B., Liu, J., Yang, Y., & Liu, J. (2010). Study on the adsorption of Neutral Red from aqueous solution onto halloysite nanotubes. Water Research, 44(5), 1489–1497. https://doi.org/10.1016/j.watres.2009.10.042

Lyu, R., Zhang, C., Xia, T., Chen, S., Wang, Z., Luo, X., Wang, L., Wang, Y., Yu, J., & Wang, C. W. (2020). Efficient adsorption of methylene blue by mesoporous silica prepared using sol-gel method employing hydroxyethyl cellulose as a template. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 606(August), 125425. https://doi.org/10.1016/j.colsurfa.2020.125425

Makaremi, M., De Silva, R. T., & Pasbakhsh, P. (2015). Electrospun nanofibrous membranes of polyacrylonitrile/halloysite with superior water filtration ability. Journal of Physical Chemistry C, 119(14), 7949–7958. https://doi.org/10.1021/acs.jpcc.5b00662

Moura, D. C. De, Quiroz, M. A., Silva, D. R. Da, Salazar, R., & Martínez-Huitle, C. A. (2016). Electrochemical degradation of Acid Blue 113 dye using TiO2-nanotubes decorated with PbO2 as anode. Environmental Nanotechnology, Monitoring & Management, 5, 13–20. https://doi.org/10.1016/J.ENMM.2015.11.001

Mulana, F., Muslim, A., & Nurul Alam, P. (2015). Adsorption of Pb (II) Heavy Metals from Wastewater Using Modified Rice Husk as Adsorbent. Proceedings of The 5th Annual International Conference Syiah Kuala University (AIC Unsyiah) 2015, I, 12–17.

Oehmen, A., Vergel, D., Fradinho, J., Reis, M. A. M., Crespo, J. G., & Velizarov, S. (2014). Mercury removal from water streams through the ion exchange membrane bioreactor concept. Journal of Hazardous Materials, 264, 65–70. https://doi.org/10.1016/j.jhazmat.2013.10.067

Papoulis, D., Komarneni, S., Nikolopoulou, A., Tsolis-Katagas, P., Panagiotaras, D., Kacandes, H. G., Zhang, P., Yin, S., Sato, T., & Katsuki, H. (2010). Palygorskite- and Halloysite-TiO2 nanocomposites: Synthesis and photocatalytic activity. Applied Clay Science, 50(1), 118–124. https://doi.org/10.1016/j.clay.2010.07.013

Rahmatpour, A., & Hesarsorkh, A. H. A. (2024). Chitosan and silica nanoparticles-modified xanthan gum-derived bio-nanocomposite hydrogel film for efficient uptake of methyl orange acidic dye. Carbohydrate Polymers, 328. https://doi.org/10.1016/j.carbpol.2023.121721

Sivakumar, A., Murugesan, B., Loganathan, A., & Sivakumar, P. (2014). A review on decolourisation of dyes by photodegradation using various bismuth catalysts. Journal of the Taiwan Institute of Chemical Engineers, 45(5), 2300–2306. https://doi.org/10.1016/j.jtice.2014.07.003

Sulistiyo, Y. A., Andriana, N., Piluharto, B., & Zulfikar, Z. (2017). Silica gels from coal fly ash as methylene blue adsorbent: Isotherm and kinetic studies. Bulletin of Chemical Reaction Engineering &Amp; Catalysis, 12(2), 263–272. https://doi.org/10.9767/bcrec.12.2.766.263-272

Szczepanik, B., Banaś, D., Kubala-Kukuś, A., Szary, K., Słomkiewicz, P., Rędzia, N., & Frydel, L. (2020). Surface properties of halloysite-carbon nanocomposites and their application for adsorption of paracetamol. Materials, 13(24), 1–17. https://doi.org/10.3390/ma13245647

Takahashi, T., Dahlgren, R. A., Theng, B. K. G., Whitton, J. S., & Soma, M. (2001). Potassium-Selective, Halloysite-Rich Soils Formed in Volcanic Materials from Northern California. Soil Science Society of America Journal, 65(2), 516–526. https://doi.org/10.2136/sssaj2001.652516x

Utari, N.P.S.N., Sudiarta, I.W., dan Suarya, P. (2020). Sintesis Dan Karakterisasi Silika Gel Dari Abu Vulkanik Gunung Agung Melalui Teknik Sol-Gel N. P. S. N. Utari * , I W. Sudiarta, dan P. Suarya. Jurnal Kimia (Journal of Chemistry), 14(1), 30–36.

Van Ranst, E., Kips, P., Mbogoni, J., Mees, F., Dumon, M., & Delvaux, B. (2020). Halloysite-smectite mixed-layered clay in fluvio-volcanic soils at the southern foot of Mount Kilimanjaro, Tanzania. Geoderma, 375, 114527–114539. https://doi.org/10.1016/j.geoderma.2020.114527

Wang, T., Sun, Y., Wang, S., Li, X., Yue, Y., & Gao, Q. (2021). Effective Adsorption of Methyl Orange on Organo-Silica Nanoparticles Functionalized by a Multi-Hydroxyl-Containing Gemini Surfactant: A Joint Experimental and Theoretical Study. ACS Omega, 6(28), 18014–18023. https://doi.org/10.1021/acsomega.1c01788

Wu, L., Liu, X., Lv, G., Zhu, R., Tian, L., Liu, M., Li, Y., Rao, W., Liu, T., & Liao, L. (2021). Study on the adsorption properties of methyl orange by natural one-dimensional nano-mineral materials with different structures. Scientific Reports, 11(1), 1–11. https://doi.org/10.1038/s41598-021-90235-1

Yuan, N., Cai, H., Liu, T., Huang, Q., & Zhang, X. (2019). Adsorptive removal of methylene blue from aqueous solution using coal fly ash-derived mesoporous silica material. Adsorption Science and Technology, 37(3–4), 333–348. https://doi.org/10.1177/0263617419827438

Yuan, P., Southon, P. D., Liu, Z., Green, M. E. R., Hook, J. M., Antill, S. J., & Kepert, C. J. (2008). Functionalization of halloysite clay nanotubes by grafting with γ-aminopropyltriethoxysilane. Journal of Physical Chemistry C, 112(40), 15742–15751. https://doi.org/10.1021/jp805657t

Zam, Z. Z., Limatahu, N. A., & Baturante, N. J. (2021). Nitrate Adsorption capacity of Activated Gamalama Volcanic Ash. JKPK (Jurnal Kimia Dan Pendidikan Kimia), 6(1), 23–28.

Zhao, M., & Liu, P. (2008). Adsorption behavior of methylene blue on halloysite nanotubes. Microporous and Mesoporous Materials, 112(1–3), 419–424. https://doi.org/10.1016/j.micromeso.2007.10.018

Downloads

Published

2025-07-01