NICKEL-BASED CATALYSTS FOR UREA ELECTROLYSIS: A REVIEW OF ELECTROLYSIS PERFORMANCE AND CATALYST DESIGN

Authors

  • Raja Doli Tota Parulian Situmorang Department of Chemistry, Faculty of Sciences and Informatics, Universitas Jenderal Achmad Yani, Cimahi, West Java, Indonesia, Indonesia
  • Hernandi Sujono Department of Chemistry, Faculty of Sciences and Informatics, Universitas Jenderal Achmad Yani, Cimahi, West Java, Indonesia, Indonesia
  • Jasmansyah Jasmansyah Study Program of Master of Chemistry, Faculty of Sciences and Informatics, Universitas Jenderal Achmad Yani, Cimahi, West Java, Indonesia, Indonesia
  • Anceu Murniati Study Program of Master of Chemistry, Faculty of Sciences and Informatics, Universitas Jenderal Achmad Yani, Cimahi, West Java, Indonesia Material and Environmental Development Center, Universitas Jenderal Achmad Yani, Cimahi, West Java, Indonesia, Indonesia
  • Arie Hardian Study Program of Master of Chemistry, Faculty of Sciences and Informatics, Universitas Jenderal Achmad Yani, Cimahi, West Java, Indonesia Material and Environmental Development Center, Universitas Jenderal Achmad Yani, Cimahi, West Java, Indonesia, Indonesia
  • Ferli Septi Irwansyah Department of Chemistry Education, UIN Sunan Gunung Djati, Bandung, West Java, Indonesia, Indonesia

DOI:

https://doi.org/10.21580/wjc.v8i2.26973

Keywords:

Catalyst Design, Electrocatalyst Performance, Electrocatalyst Prototype, Nickel Catalysts, Urea Electrolysis

Abstract

The increasing concentration of urea in wastewater poses both an environmental challenge and an opportunity for sustainable hydrogen production through urea electrolysis, which depends on efficient electrocatalysts. This review focused on nickel-based catalysts due to their high catalytic activity and stability in alkaline media. Using the PRISMA method, twenty studies published between 2020 and 2025 were analyzed based on current density, cell potential, Tafel slope, and stability. Through thematic analysis, catalysts were categorized according to their structure, composition, design strategy, and performance at 10, 50, 100, and 500 mA cm⁻². The review also highlights the importance of testing catalysts in real wastewater rather than in idealized electrolytes. An effective catalyst should exhibit a porous or layered nanostructure, multimetallic composition, and surface doping, while avoiding noble metals and overly complex architectures that hinder charge transfer and scalability.

Downloads

Download data is not yet available.

Author Biographies

Raja Doli Tota Parulian Situmorang, Department of Chemistry, Faculty of Sciences and Informatics, Universitas Jenderal Achmad Yani, Cimahi, West Java, Indonesia

Department of Chemistry, Faculty of Sciences and Informatics, Universitas Jenderal Achmad Yani, Cimahi, West Java, Indonesia

Hernandi Sujono, Department of Chemistry, Faculty of Sciences and Informatics, Universitas Jenderal Achmad Yani, Cimahi, West Java, Indonesia

Department of Chemistry, Faculty of Sciences and Informatics, Universitas Jenderal Achmad Yani, Cimahi, West Java, Indonesia

Jasmansyah Jasmansyah, Study Program of Master of Chemistry, Faculty of Sciences and Informatics, Universitas Jenderal Achmad Yani, Cimahi, West Java, Indonesia

Study Program of Master of Chemistry, Faculty of Sciences and Informatics, Universitas Jenderal Achmad Yani, Cimahi, West Java, Indonesia

Anceu Murniati, Study Program of Master of Chemistry, Faculty of Sciences and Informatics, Universitas Jenderal Achmad Yani, Cimahi, West Java, Indonesia Material and Environmental Development Center, Universitas Jenderal Achmad Yani, Cimahi, West Java, Indonesia

Study Program of Master of Chemistry, Faculty of Sciences and Informatics, Universitas Jenderal Achmad Yani, Cimahi, West Java, Indonesia

Material and Environmental Development Center, Universitas Jenderal Achmad Yani, Cimahi, West Java, Indonesia

Arie Hardian, Study Program of Master of Chemistry, Faculty of Sciences and Informatics, Universitas Jenderal Achmad Yani, Cimahi, West Java, Indonesia Material and Environmental Development Center, Universitas Jenderal Achmad Yani, Cimahi, West Java, Indonesia

Study Program of Master of Chemistry, Faculty of Sciences and Informatics, Universitas Jenderal Achmad Yani, Cimahi, West Java, Indonesia

Material and Environmental Development Center, Universitas Jenderal Achmad Yani, Cimahi, West Java, Indonesia

Ferli Septi Irwansyah, Department of Chemistry Education, UIN Sunan Gunung Djati, Bandung, West Java, Indonesia

Department of Chemistry Education, UIN Sunan Gunung Djati, Bandung, West Java, Indonesia

References

Agrawal, P., Ebrahim, S., & Ponnamma, D. (2024). Advancements in nanocarbon-based catalysts for enhanced fuel cell performance: a comprehensive review. International Journal of Energy and Water Resources. https://doi.org/10.1007/s42108-024-00324-w

Akkari, S., Sánchez-Sánchez, C. M., Hopsort, G., Serrano, K. G., Loubière, K., Tzedakis, T., Benyahia, R., Rebiai, L., Bastide, S., Cachet-Vivier, C., Vivier, V., Lopez-Viveros, M., & Azimi, S. (2025). Progress on electrochemical and photoelectrochemical urea and ammonia conversion from urine for sustainable wastewater treatment. Applied Catalysis B: Environment and Energy, 362, 124718. https://doi.org/10.1016/j.apcatb.2024.124718

Aladeemy, S. A., Arunachalam, P., Amer, M. S., & Al-Mayouf, A. M. (2025). Electrochemically embedded heterostructured Ni/NiS anchored onto carbon paper as bifunctional electrocatalysts for urea oxidation and hydrogen evolution reaction. RSC Advances, 15(1), 14–25. https://doi.org/10.1039/D4RA07418A

Alex, C., Naduvil Kovilakath, M. S., Rao, N. N., Sathiskumar, C., Tayal, A., Meesala, L., Kumar, P., & John, N. S. (2024). In-situ generated Ni(OH)2 on chemically activated spent catalyst sustains urea electro-oxidation in extensive alkaline conditions. International Journal of Hydrogen Energy, 59, 390–399. https://doi.org/10.1016/j.ijhydene.2024.01.339

Anuratha, K., Rinawati, M., Wu, T.-H., Yeh, M.-H., & Lin, J.-Y. (2022). Recent Development of Nickel-Based Electrocatalysts for Urea Electrolysis in Alkaline Solution. Nanomaterials, 12(17), 2970. https://doi.org/10.3390/nano12172970

Ao, G.-H., Zhao, P.-Z., Peng, Z.-G., Wang, S., Guo, Y.-S., Chen, C.-T., & Wang, Z.-H. (2021). Construction of Hierarchical Porous Architecture on Ni Foam for Efficient Oxygen Evolution Reaction Electrode. Frontiers in Materials, 8. https://doi.org/10.3389/fmats.2021.726270

Ao, X., Gu, Y., Li, C., Wu, Y., Wu, C., Xun, S., Nikiforov, A., Xu, C., Jia, J., Cai, W., Ma, R., Huo, K., & Wang, C. (2022). Sulfurization-functionalized 2D metal-organic frameworks for high-performance urea fuel cell. Applied Catalysis B: Environmental, 315, 121586. https://doi.org/10.1016/j.apcatb.2022.121586

Bao, Y., Chen, K., Feng, Z., Ru, H., Guo, M., Chen, D., Li, X., Tu, J., Ding, L., & Lai, X. (2023). Bimetallic MoO 3 /Ni-N-C Nanoalloys Derived from MOFs for Electrocatalytic Urea Oxidation Reaction. ACS Applied Nano Materials, 6(13), 11221–11229. https://doi.org/10.1021/acsanm.3c01258

Chen, K., Qian, J., Xu, W., & Li, T.-T. (2024). Hierarchical Superhydrophilic/Superaerophobic Ni(OH) 2 @NiFe-PBA Nanoarray Supported on Nickel Foam for Boosting the Oxygen Evolution Reaction. Inorganic Chemistry, 63(1), 642–652. https://doi.org/10.1021/acs.inorgchem.3c03542

Chen, L., Wang, L., Ren, J., Wang, H., Tian, W., Sun, M., & Yuan, Z. (2024). Artificial Heterointerfaces with Regulated Charge Distribution of Ni Active Sites for Urea Oxidation Reaction. Small Methods, 8(12). https://doi.org/10.1002/smtd.202400108

Chidunchi, I., Kulikov, M., Sаfarov, R., & Kopishev, E. (2024). Extraction of platinum group metals from catalytic converters. Heliyon, 10(3), e25283. https://doi.org/10.1016/j.heliyon.2024.e25283

Da, Y., Jiang, R., Tian, Z., Han, X., Chen, W., & Hu, W. (2023). The applications of single‐atom alloys in electrocatalysis: Progress and challenges. SmartMat, 4(1). https://doi.org/10.1002/smm2.1136

Dharmaraj, K., Hanna, R., Lauermann, I., Bagacki, R., Xi, F., Kemppainen, E., Schlatmann, R., & Calnan, S. (2024). Electrodeposited Porous Nickel-Copper as a Non-Noble Metal Catalyst for Urea-Assisted Anion Exchange Membrane Electrolysis for Hydrogen Production. ACS Sustainable Chemistry and Engineering, 12(26), 9908–9921. https://doi.org/10.1021/acssuschemeng.4c02424

Fan, X., Fu, Z., Lin, J., He, B., Zhang, J., Hu, E., & Chen, Z. (2024). Modulation of energy barrier of reaction steps over S-doped Ni(OH)2/Cu composites to achieve high-performance urea electrolysis catalysts. Chemical Engineering Journal, 490. https://doi.org/10.1016/j.cej.2024.151251

Gao, X., Bai, X., Wang, P., Jiao, Y., Davey, K., Zheng, Y., & Qiao, S. Z. (2023). Boosting urea electrooxidation on oxyanion-engineered nickel sites via inhibited water oxidation. Nature Communications, 14(1). https://doi.org/10.1038/s41467-023-41588-w

Gaur, A., John, J. M., Pundir, V., Kaur, R., & Bagchi, V. (2023). Electronegativity-Induced Valence State Augmentation of Ni and Co through Electronic Redistribution between Co-Ni 3 N/CeF 3 Interfaces for Oxygen Evolution Reaction. ACS Applied Energy Materials, 6(3), 1763–1770. https://doi.org/10.1021/acsaem.2c03656

Ge, J., Kuang, J., Xiao, Y., Guan, M., & Yang, C. (2023). Recent development of nickel-based catalysts and in situ characterization techniques for mechanism understanding of the urea oxidation reaction. Surfaces and Interfaces, 41, 103230. https://doi.org/10.1016/j.surfin.2023.103230

Ghosh, A., Fathima Thanutty Kallungal, S., & Ramaprabhu, S. (2023). 2D Metal-Organic Frameworks: Properties, Synthesis, and Applications in Electrochemical and Optical Biosensors. Biosensors, 13(1), 123. https://doi.org/10.3390/bios13010123

Gnana kumar, G., Farithkhan, A., & Manthiram, A. (2020). Direct Urea Fuel Cells: Recent Progress and Critical Challenges of Urea Oxidation Electrocatalysis. Advanced Energy and Sustainability Research, 1(1). https://doi.org/10.1002/aesr.202000015

Gómez-Sacedón, C., López-Fernández, E., González-Elipe, A. R., Espinós, J. P., Yubero, F., Gil-Rostra, J., & de Lucas-Consuegra, A. (2024). NiFeO/NiFe bilayer electrocatalyst for an efficient urea assisted water electrolysis. International Journal of Hydrogen Energy, 59, 604–613. https://doi.org/10.1016/j.ijhydene.2024.02.079

Huang, L., Li, N., Xiao, J., Lou, H., Xie, C., Yang, Y., Jiang, H., & Zhang, W. (2024). Morphology-controlled nickel-organic framework nanosheet arrays for efficient urea electrolysis in alkaline media. Journal of Electroanalytical Chemistry, 965. https://doi.org/10.1016/j.jelechem.2024.118363

Hu, X., Tian, X., Lin, Y.-W., & Wang, Z. (2019). Nickel foam and stainless steel mesh as electrocatalysts for hydrogen evolution reaction, oxygen evolution reaction and overall water splitting in alkaline media. RSC Advances, 9(54), 31563–31571. https://doi.org/10.1039/C9RA07258F

Isik, I. B., Kaya, D., Isik, H. H., Ekicibil, A., & Karadag, F. (2024). Bifunctional bimetallic PtNi, PtCu, and NiCu nanoparticles: Electrocatalytic activities for hydrogen evolution reaction and magnetic properties. Materials Science and Engineering: B, 300, 117081. https://doi.org/10.1016/j.mseb.2023.117081

Islam Rubel, R., Hasan Ali, Md., Abu Jafor, Md., & Mahmodul Alam, Md. (2019). Carbon nanotubes agglomeration in reinforced composites: A review. AIMS Materials Science, 6(5), 756–780. https://doi.org/10.3934/matersci.2019.5.756

Jin, H., Yu, L., Xiong, K., Chen, J., Zhang, H., Deng, M., & Shi, X. (2024). An energy-efficient H2 production based on urea-aided water splitting enhanced by Ru induced in-situ speciation of NiO nanosheets on porous Ni. Journal of Alloys and Compounds, 983. https://doi.org/10.1016/j.jallcom.2024.173938

Ji, X., Zhang, Y., Ma, Z., & Qiu, Y. (2020). Oxygen Vacancy‐rich Ni/NiO@NC Nanosheets with Schottky Heterointerface for Efficient Urea Oxidation Reaction. ChemSusChem, 13(18), 5004–5014. https://doi.org/10.1002/cssc.202001185

Ke, J., He, F., Wu, H., Lyu, S., Liu, J., Yang, B., Li, Z., Zhang, Q., Chen, J., Lei, L., Hou, Y., & Ostrikov, K. (2021). Nanocarbon-Enhanced 2D Photoelectrodes: A New Paradigm in Photoelectrochemical Water Splitting. Nano-Micro Letters, 13(1), 24. https://doi.org/10.1007/s40820-020-00545-8

Li, J., Zhang, J., & Yang, J.-H. (2022). Research progress and applications of nickel-based catalysts for electrooxidation of urea. International Journal of Hydrogen Energy, 47(12), 7693–7712. https://doi.org/10.1016/j.ijhydene.2021.12.099

Li, L., Soyhan, I., Warszawik, E., & van Rijn, P. (2024). Layered Double Hydroxides: Recent Progress and Promising Perspectives Toward Biomedical Applications. Advanced Science, 11(20). https://doi.org/10.1002/advs.202306035

Liu, Y., Chen, Y., Liang, C., Liang, Z., Fan, C., Wang, F., & Lei, J. (2024). Low-Pt-loading electrocatalyst derived from the reduction of hydrogenated MoO3 for highly efficient hydrogen evolution reaction. International Journal of Hydrogen Energy, 51, 701–708. https://doi.org/10.1016/j.ijhydene.2023.10.179

Li, W., Cheng, G., Peng, S., Sun, M., Wang, S., Han, S., Liu, Y., Zhai, T., & Yu, L. (2022). Tuning hydrogen binding energy by interfacial charge transfer enables pH-universal hydrogen evolution catalysis of metal phosphides. Chemical Engineering Journal, 430, 132699. https://doi.org/10.1016/j.cej.2021.132699

Li, X., Wang, Y., Du, X., & Zhang, X. (2024). Controlled synthesis of X (X = Mo, Cr and W) doped NiCoP nanostructures as efficient and environmentally friendly urea electrolysis catalyst. Fuel, 365. https://doi.org/10.1016/j.fuel.2024.131219

Li, X., Zhao, L., Yu, J., Liu, X., Zhang, X., Liu, H., & Zhou, W. (2020). Water Splitting: From Electrode to Green Energy System. Nano-Micro Letters, 12(1), 131. https://doi.org/10.1007/s40820-020-00469-3

Ma, D., Jia, Y., Li, Y., Yang, H., Wang, F., Zheng, X., Shao, G., Xiong, Q., Shen, Z., Liu, M., Lou, Z., & Gu, C. (2024). Anion modulate the morphological and electronic structure of NiFe-based electrocatalyst for efficient urea oxidation-assisted water electrolysis. Journal of Materials Science and Technology, 197, 207–214. https://doi.org/10.1016/j.jmst.2024.01.054

Masjedi, S. K., Kazemi, A., Moeinnadini, M., Khaki, E., & Olsen, S. I. (2024). Urea production: An absolute environmental sustainability assessment. Science of The Total Environment, 908, 168225. https://doi.org/10.1016/j.scitotenv.2023.168225

Miao, J., Hong, Q. L., Zhang, P., Ren, Z. F., Zhao, A. C., Li, Y. H., Wang, P. F., & Chen, Y. (2024). Self-supported Pt nanoparticles-NiFeP nanosheets arrays nanohybrid with hydrophilic surface towards urea electrolysis. Applied Surface Science, 652. https://doi.org/10.1016/j.apsusc.2023.159276

Moriau, L., Bele, M., Marinko, Ž., Ruiz-Zepeda, F., Koderman Podboršek, G., Šala, M., Šurca, A. K., Kovač, J., Arčon, I., Jovanovič, P., Hodnik, N., & Suhadolnik, L. (2021). Effect of the Morphology of the High-Surface-Area Support on the Performance of the Oxygen-Evolution Reaction for Iridium Nanoparticles. ACS Catalysis, 11(2), 670–681. https://doi.org/10.1021/acscatal.0c04741

Nagappan, S., Yang, S., Adhikari, A., Patel, R., & Kundu, S. (2023). A review on consequences of flexible layered double hydroxide-based electrodes: fabrication and water splitting application. Sustainable Energy & Fuels, 7(16), 3741–3775. https://doi.org/10.1039/D3SE00573A

Niu, H., Wang, Q., Huang, C., Zhang, M., Yan, Y., Liu, T., & Zhou, W. (2023). Noble Metal-Based Heterogeneous Catalysts for Electrochemical Hydrogen Evolution Reaction. Applied Sciences, 13(4), 2177. https://doi.org/10.3390/app13042177

Parvin, S., Aransiola, E., Ammar, M., Lee, S., Zhang, L., Weber, J., & Baltrusaitis, J. (2024). Tailored Ni(OH)2/CuCo/Ni(OH)2 Composite Interfaces for Efficient and Durable Urea Oxidation Reaction. ACS Applied Materials and Interfaces. https://doi.org/10.1021/acsami.4c14041

Patel, K. B., Parmar, B., Ravi, K., Patidar, R., Chaudhari, J. C., Srivastava, D. N., & Bhadu, G. R. (2023). Metal-organic framework derived core-shell nanoparticles as high performance bifunctional electrocatalysts for HER and OER. Applied Surface Science, 616, 156499. https://doi.org/10.1016/j.apsusc.2023.156499

Poimenidis, I. A., Papakosta, N., Klini, A., Farsari, M., Konsolakis, M., Loukakos, P. A., & Moustaizis, S. D. (2023). Electrodeposited Ni foam electrodes for increased hydrogen production in alkaline electrolysis. Fuel, 342, 127798. https://doi.org/10.1016/j.fuel.2023.127798

Putri, L. K., Ng, B.-J., Yeo, R. Y. Z., Ong, W.-J., Mohamed, A. R., & Chai, S.-P. (2023). Engineering nickel phosphides for electrocatalytic hydrogen evolution: A doping perspective. Chemical Engineering Journal, 461, 141845. https://doi.org/10.1016/j.cej.2023.141845

Qian, G., Chen, J., Jiang, W., Yu, T., Tan, K., & Yin, S. (2023). Strong electronic coupling of CoNi and N-doped-carbon for efficient urea-assisted H2 production at a large current density. Carbon Energy, 5(12). https://doi.org/10.1002/cey2.368

Qian, G., Lu, T., Wang, Y., Xu, H., Cao, X., Xie, Z., Chen, C., & Min, D. (2024). N-induced compressive strain in Ni-MoO2 heterostructure with micro-nano array for improving high-current-output urea-assisted water electrolysis performance. Chemical Engineering Journal, 480. https://doi.org/10.1016/j.cej.2023.147993

Qiao, P., Li, G., Xu, X., Wang, D., Wang, F., Xu, L., Lu, L., Cong, H., & Sun, M. (2024). Mediating Self‐Oxidation and Competitive Adsorption for Achieving High‐Selective Urea Oxidation Catalysis at Industrial‐Level Current Densities. Advanced Functional Materials. https://doi.org/10.1002/adfm.202421136

Qu, J., Dong, Y., Zhang, T., Zhao, C., Wei, L., & Guan, X. (2024). Impact of bimetallic synergies on Mo-doping NiFeOOH: Insights into enhanced OER activity and reconstructed electronic structure. Frontiers in Energy, 18(6), 850–862. https://doi.org/10.1007/s11708-024-0960-6

Rahimi, S., Modin, O., & Mijakovic, I. (2020). Technologies for biological removal and recovery of nitrogen from wastewater. Biotechnology Advances, 43, 107570. https://doi.org/10.1016/j.biotechadv.2020.107570

Randall, D. G., Krähenbühl, M., Köpping, I., Larsen, T. A., & Udert, K. M. (2016). A novel approach for stabilizing fresh urine by calcium hydroxide addition. Water Research, 95, 361–369. https://doi.org/10.1016/j.watres.2016.03.007

Ratsoma, M. S., Poho, B. L. O., Makgopa, K., Raju, K., Modibane, K. D., Jafta, C. J., & Oyedotun, K. O. (2023). Application of Nickel Foam in Electrochemical Systems: A Review. Journal of Electronic Materials, 52(4), 2264–2291. https://doi.org/10.1007/s11664-023-10244-w

Sanati, S., Morsali, A., & García, H. (2023). Metal-organic framework-based materials as key components in electrocatalytic oxidation and reduction reactions. Journal of Energy Chemistry, 87, 540–567. https://doi.org/10.1016/j.jechem.2023.08.042

Santos, H. L. S., Corradini, P. G., Medina, M., Dias, J. A., & Mascaro, L. H. (2020). NiMo–NiCu Inexpensive Composite with High Activity for Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 12(15), 17492–17501. https://doi.org/10.1021/acsami.0c00262

Scibioh, M. A., & Viswanathan, B. (2020). Electrolyte materials for supercapacitors. In Materials for Supercapacitor Applications (pp. 205–314). Elsevier. https://doi.org/10.1016/B978-0-12-819858-2.00004-4

Seo, D.-G., Park, D.-H., Park, S.-H., Gu, Y., Lim, D.-M., Hong, C.-E., Han, J.-I., Kim, J.-H., Jang, J.-S., Kim, E.-J., Yun, J.-W., Jo, H.-M., & Park, K.-W. (2025). Optimization of hollow Pt-Ni alloy bifunctional electrocatalysts via ethylene glycol/glycerol ratio in modified polyol process. Journal of Power Sources, 632, 236322. https://doi.org/10.1016/j.jpowsour.2025.236322

Shaarawy, H. H., Hussein, H. S., Attia, A., & Hawash, S. I. (2024). Green hydrogen generation in alkaline solution using electrodeposited Ni-Co-nano-graphene thin film cathode. Environmental Science and Pollution Research, 31(19), 28719–28733. https://doi.org/10.1007/s11356-024-32948-0

Shaban, A., Basiouny, M. E., & AboSiada, O. A. (2024). Comparative study of the removal of urea by electrocoagulation and electrocoagulation combined with chemical coagulation in aqueous effluents. Scientific Reports, 14(1), 30605. https://doi.org/10.1038/s41598-024-81422-x

Su, L., Cui, X., He, T., Zeng, L., Tian, H., Song, Y., Qi, K., & Xia, B. Y. (2019). Surface reconstruction of cobalt phosphide nanosheets by electrochemical activation for enhanced hydrogen evolution in alkaline solution. Chemical Science, 10(7), 2019–2024. https://doi.org/10.1039/C8SC04589E

Svane, S., Sigurdarson, J. J., Finkenwirth, F., Eitinger, T., & Karring, H. (2020). Inhibition of urease activity by different compounds provides insight into the modulation and association of bacterial nickel import and ureolysis. Scientific Reports, 10(1), 8503. https://doi.org/10.1038/s41598-020-65107-9

Tumiwa, J. R., & Mizik, T. (2025). Advancing nickel-based catalysts for enhanced hydrogen production: Innovations in electrolysis and catalyst design. International Journal of Hydrogen Energy, 109, 961–978. https://doi.org/10.1016/j.ijhydene.2025.02.020

Tutar, R., Ceylan, D., & Çelebi-Saltik, B. (2024). Preparation and characterization of conductive and multi-network nanocomposite hydrogels as potential scaffolds for electroactive tissues. New Journal of Chemistry, 48(33), 14736–14745. https://doi.org/10.1039/D4NJ01930J

Urbańczyk, E., Sowa, M., & Simka, W. (2016). Urea removal from aqueous solutions—a review. Journal of Applied Electrochemistry, 46(10), 1011–1029. https://doi.org/10.1007/s10800-016-0993-6

Vij, V., Sultan, S., Harzandi, A. M., Meena, A., Tiwari, J. N., Lee, W.-G., Yoon, T., & Kim, K. S. (2017). Nickel-Based Electrocatalysts for Energy-Related Applications: Oxygen Reduction, Oxygen Evolution, and Hydrogen Evolution Reactions. ACS Catalysis, 7(10), 7196–7225. https://doi.org/10.1021/acscatal.7b01800

Wallnöfer-Ogris, E., Grimmer, I., Ranz, M., Höglinger, M., Kartusch, S., Rauh, J., Macherhammer, M.-G., Grabner, B., & Trattner, A. (2024). A review on understanding and identifying degradation mechanisms in PEM water electrolysis cells: Insights for stack application, development, and research. International Journal of Hydrogen Energy, 65, 381–397. https://doi.org/10.1016/j.ijhydene.2024.04.017

Wang, G., Li, X., Wang, J., Yan, H., Zhang, D., Tian, C., Zhang, H., & Jiao, Y. (2025). Vanadium-Modulated Molybdenum/Nickel-Based Multi-Heterostructures finely tailoring d-Band centers for electrocatalytic water splitting. Journal of Colloid and Interface Science, 137543. https://doi.org/10.1016/j.jcis.2025.137543

Wang, H., Zou, H., Liu, Y., Liu, Z., Sun, W., Lin, K. A., Li, T., & Luo, S. (2021). Ni2P nanocrystals embedded Ni-MOF nanosheets supported on nickel foam as bifunctional electrocatalyst for urea electrolysis. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-00776-8

Wang, Y., Lu, Y., Shi, Y., Wang, J., Zheng, Y., Pan, J., Li, C., & Cao, J. (2023). Realizing highly-efficient urea oxidation via decreasing the energy barrier of deprotonation over regulated electronic structure of Co doped Ni(OH)2. Applied Surface Science, 640. https://doi.org/10.1016/j.apsusc.2023.158391

Weerakoon, D., Bansal, B., Padhye, L. P., Rachmani, A., James Wright, L., Silyn Roberts, G., & Baroutian, S. (2023). A critical review on current urea removal technologies from water: An approach for pollution prevention and resource recovery. Separation and Purification Technology, 314, 123652. https://doi.org/10.1016/j.seppur.2023.123652

Wu, T.-H., Lin, Y.-C., Hou, B.-W., & Liang, W.-Y. (2020). Nanostructured β−NiS Catalyst for Enhanced and Stable Electro−oxidation of Urea. Catalysts, 10(11), 1280. https://doi.org/10.3390/catal10111280

Xiang, R., Yu, Y., Wang, C., & Gao, Q. (2024). Construction of hierarchical CoNiMoOxHy/NF nanostructures for highly efficient urea oxidation reaction. Electrochimica Acta, 479, 143832. https://doi.org/10.1016/j.electacta.2024.143832

Yang, D., Li, J., Li, W., Jiao, Y. Z., & Yang, J. H. (2024). The ultrathin regular circular structural Ni-P nanosheet for efficient urea electrooxidation. Journal of Environmental Chemical Engineering, 12(2). https://doi.org/10.1016/j.jece.2024.112433

Yu, F.-Y., Lang, Z.-L., Yin, L.-Y., Feng, K., Xia, Y.-J., Tan, H.-Q., Zhu, H.-T., Zhong, J., Kang, Z.-H., & Li, Y.-G. (2020). Pt-O bond as an active site superior to Pt0 in hydrogen evolution reaction. Nature Communications, 11(1), 490. https://doi.org/10.1038/s41467-019-14274-z

Yun, W. H., Das, G., Kim, B., Park, B. J., Yoon, H. H., & Yoon, Y. S. (2021). Ni–Fe phosphide deposited carbon felt as free-standing bifunctional catalyst electrode for urea electrolysis. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-01383-3

Zhao, Q., Meng, C., Kong, D., Wang, Y., Hu, H., Chen, X., Han, Y., Chen, X., Zhou, Y., Lin, M., & Wu, M. (2021). In Situ Construction of Nickel Sulfide Nano-Heterostructures for Highly Efficient Overall Urea Electrolysis. ACS Sustainable Chemistry & Engineering, 9(46), 15582–15590. https://doi.org/10.1021/acssuschemeng.1c05722

Zhao, Y., Zhou, P., Li, Z., Zhao, B., Jiang, W., Chen, X., Wang, J., Yang, R., & Zuo, C. (2024). Interfacial engineering of hierarchical MoNi4/NiO heterostructure nanosheet arrays as bifunctional electrocatalysts for urea-assisted energy-saving hydrogen production. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 681. https://doi.org/10.1016/j.colsurfa.2023.132776

Zhong, M., Li, W., Wang, C., & Lu, X. (2022). Synthesis of hierarchical nickel sulfide nanotubes for highly efficient electrocatalytic urea oxidation. Applied Surface Science, 575. https://doi.org/10.1016/j.apsusc.2021.151708

Zhou, Y., Zhu, Y., Zhu, J., Li, C., & Chen, G. (2023). A Comprehensive Review on Wastewater Nitrogen Removal and Its Recovery Processes. International Journal of Environmental Research and Public Health, 20(4), 3429. https://doi.org/10.3390/ijerph20043429

Downloads

Published

2025-12-17

How to Cite

Situmorang, R. D. T. P., Sujono, H., Jasmansyah, J., Murniati, A., Hardian, A., & Irwansyah, F. S. (2025). NICKEL-BASED CATALYSTS FOR UREA ELECTROLYSIS: A REVIEW OF ELECTROLYSIS PERFORMANCE AND CATALYST DESIGN. Walisongo Journal of Chemistry, 8(2), 218–241. https://doi.org/10.21580/wjc.v8i2.26973