NICKEL-BASED CATALYSTS FOR UREA ELECTROLYSIS: A REVIEW OF ELECTROLYSIS PERFORMANCE AND CATALYST DESIGN
DOI:
https://doi.org/10.21580/wjc.v8i2.26973Keywords:
Catalyst Design, Electrocatalyst Performance, Electrocatalyst Prototype, Nickel Catalysts, Urea ElectrolysisAbstract
The increasing concentration of urea in wastewater poses both an environmental challenge and an opportunity for sustainable hydrogen production through urea electrolysis, which depends on efficient electrocatalysts. This review focused on nickel-based catalysts due to their high catalytic activity and stability in alkaline media. Using the PRISMA method, twenty studies published between 2020 and 2025 were analyzed based on current density, cell potential, Tafel slope, and stability. Through thematic analysis, catalysts were categorized according to their structure, composition, design strategy, and performance at 10, 50, 100, and 500 mA cm⁻². The review also highlights the importance of testing catalysts in real wastewater rather than in idealized electrolytes. An effective catalyst should exhibit a porous or layered nanostructure, multimetallic composition, and surface doping, while avoiding noble metals and overly complex architectures that hinder charge transfer and scalability.
Downloads
References
Agrawal, P., Ebrahim, S., & Ponnamma, D. (2024). Advancements in nanocarbon-based catalysts for enhanced fuel cell performance: a comprehensive review. International Journal of Energy and Water Resources. https://doi.org/10.1007/s42108-024-00324-w
Akkari, S., Sánchez-Sánchez, C. M., Hopsort, G., Serrano, K. G., Loubière, K., Tzedakis, T., Benyahia, R., Rebiai, L., Bastide, S., Cachet-Vivier, C., Vivier, V., Lopez-Viveros, M., & Azimi, S. (2025). Progress on electrochemical and photoelectrochemical urea and ammonia conversion from urine for sustainable wastewater treatment. Applied Catalysis B: Environment and Energy, 362, 124718. https://doi.org/10.1016/j.apcatb.2024.124718
Aladeemy, S. A., Arunachalam, P., Amer, M. S., & Al-Mayouf, A. M. (2025). Electrochemically embedded heterostructured Ni/NiS anchored onto carbon paper as bifunctional electrocatalysts for urea oxidation and hydrogen evolution reaction. RSC Advances, 15(1), 14–25. https://doi.org/10.1039/D4RA07418A
Alex, C., Naduvil Kovilakath, M. S., Rao, N. N., Sathiskumar, C., Tayal, A., Meesala, L., Kumar, P., & John, N. S. (2024). In-situ generated Ni(OH)2 on chemically activated spent catalyst sustains urea electro-oxidation in extensive alkaline conditions. International Journal of Hydrogen Energy, 59, 390–399. https://doi.org/10.1016/j.ijhydene.2024.01.339
Anuratha, K., Rinawati, M., Wu, T.-H., Yeh, M.-H., & Lin, J.-Y. (2022). Recent Development of Nickel-Based Electrocatalysts for Urea Electrolysis in Alkaline Solution. Nanomaterials, 12(17), 2970. https://doi.org/10.3390/nano12172970
Ao, G.-H., Zhao, P.-Z., Peng, Z.-G., Wang, S., Guo, Y.-S., Chen, C.-T., & Wang, Z.-H. (2021). Construction of Hierarchical Porous Architecture on Ni Foam for Efficient Oxygen Evolution Reaction Electrode. Frontiers in Materials, 8. https://doi.org/10.3389/fmats.2021.726270
Ao, X., Gu, Y., Li, C., Wu, Y., Wu, C., Xun, S., Nikiforov, A., Xu, C., Jia, J., Cai, W., Ma, R., Huo, K., & Wang, C. (2022). Sulfurization-functionalized 2D metal-organic frameworks for high-performance urea fuel cell. Applied Catalysis B: Environmental, 315, 121586. https://doi.org/10.1016/j.apcatb.2022.121586
Bao, Y., Chen, K., Feng, Z., Ru, H., Guo, M., Chen, D., Li, X., Tu, J., Ding, L., & Lai, X. (2023). Bimetallic MoO 3 /Ni-N-C Nanoalloys Derived from MOFs for Electrocatalytic Urea Oxidation Reaction. ACS Applied Nano Materials, 6(13), 11221–11229. https://doi.org/10.1021/acsanm.3c01258
Chen, K., Qian, J., Xu, W., & Li, T.-T. (2024). Hierarchical Superhydrophilic/Superaerophobic Ni(OH) 2 @NiFe-PBA Nanoarray Supported on Nickel Foam for Boosting the Oxygen Evolution Reaction. Inorganic Chemistry, 63(1), 642–652. https://doi.org/10.1021/acs.inorgchem.3c03542
Chen, L., Wang, L., Ren, J., Wang, H., Tian, W., Sun, M., & Yuan, Z. (2024). Artificial Heterointerfaces with Regulated Charge Distribution of Ni Active Sites for Urea Oxidation Reaction. Small Methods, 8(12). https://doi.org/10.1002/smtd.202400108
Chidunchi, I., Kulikov, M., Sаfarov, R., & Kopishev, E. (2024). Extraction of platinum group metals from catalytic converters. Heliyon, 10(3), e25283. https://doi.org/10.1016/j.heliyon.2024.e25283
Da, Y., Jiang, R., Tian, Z., Han, X., Chen, W., & Hu, W. (2023). The applications of single‐atom alloys in electrocatalysis: Progress and challenges. SmartMat, 4(1). https://doi.org/10.1002/smm2.1136
Dharmaraj, K., Hanna, R., Lauermann, I., Bagacki, R., Xi, F., Kemppainen, E., Schlatmann, R., & Calnan, S. (2024). Electrodeposited Porous Nickel-Copper as a Non-Noble Metal Catalyst for Urea-Assisted Anion Exchange Membrane Electrolysis for Hydrogen Production. ACS Sustainable Chemistry and Engineering, 12(26), 9908–9921. https://doi.org/10.1021/acssuschemeng.4c02424
Fan, X., Fu, Z., Lin, J., He, B., Zhang, J., Hu, E., & Chen, Z. (2024). Modulation of energy barrier of reaction steps over S-doped Ni(OH)2/Cu composites to achieve high-performance urea electrolysis catalysts. Chemical Engineering Journal, 490. https://doi.org/10.1016/j.cej.2024.151251
Gao, X., Bai, X., Wang, P., Jiao, Y., Davey, K., Zheng, Y., & Qiao, S. Z. (2023). Boosting urea electrooxidation on oxyanion-engineered nickel sites via inhibited water oxidation. Nature Communications, 14(1). https://doi.org/10.1038/s41467-023-41588-w
Gaur, A., John, J. M., Pundir, V., Kaur, R., & Bagchi, V. (2023). Electronegativity-Induced Valence State Augmentation of Ni and Co through Electronic Redistribution between Co-Ni 3 N/CeF 3 Interfaces for Oxygen Evolution Reaction. ACS Applied Energy Materials, 6(3), 1763–1770. https://doi.org/10.1021/acsaem.2c03656
Ge, J., Kuang, J., Xiao, Y., Guan, M., & Yang, C. (2023). Recent development of nickel-based catalysts and in situ characterization techniques for mechanism understanding of the urea oxidation reaction. Surfaces and Interfaces, 41, 103230. https://doi.org/10.1016/j.surfin.2023.103230
Ghosh, A., Fathima Thanutty Kallungal, S., & Ramaprabhu, S. (2023). 2D Metal-Organic Frameworks: Properties, Synthesis, and Applications in Electrochemical and Optical Biosensors. Biosensors, 13(1), 123. https://doi.org/10.3390/bios13010123
Gnana kumar, G., Farithkhan, A., & Manthiram, A. (2020). Direct Urea Fuel Cells: Recent Progress and Critical Challenges of Urea Oxidation Electrocatalysis. Advanced Energy and Sustainability Research, 1(1). https://doi.org/10.1002/aesr.202000015
Gómez-Sacedón, C., López-Fernández, E., González-Elipe, A. R., Espinós, J. P., Yubero, F., Gil-Rostra, J., & de Lucas-Consuegra, A. (2024). NiFeO/NiFe bilayer electrocatalyst for an efficient urea assisted water electrolysis. International Journal of Hydrogen Energy, 59, 604–613. https://doi.org/10.1016/j.ijhydene.2024.02.079
Huang, L., Li, N., Xiao, J., Lou, H., Xie, C., Yang, Y., Jiang, H., & Zhang, W. (2024). Morphology-controlled nickel-organic framework nanosheet arrays for efficient urea electrolysis in alkaline media. Journal of Electroanalytical Chemistry, 965. https://doi.org/10.1016/j.jelechem.2024.118363
Hu, X., Tian, X., Lin, Y.-W., & Wang, Z. (2019). Nickel foam and stainless steel mesh as electrocatalysts for hydrogen evolution reaction, oxygen evolution reaction and overall water splitting in alkaline media. RSC Advances, 9(54), 31563–31571. https://doi.org/10.1039/C9RA07258F
Isik, I. B., Kaya, D., Isik, H. H., Ekicibil, A., & Karadag, F. (2024). Bifunctional bimetallic PtNi, PtCu, and NiCu nanoparticles: Electrocatalytic activities for hydrogen evolution reaction and magnetic properties. Materials Science and Engineering: B, 300, 117081. https://doi.org/10.1016/j.mseb.2023.117081
Islam Rubel, R., Hasan Ali, Md., Abu Jafor, Md., & Mahmodul Alam, Md. (2019). Carbon nanotubes agglomeration in reinforced composites: A review. AIMS Materials Science, 6(5), 756–780. https://doi.org/10.3934/matersci.2019.5.756
Jin, H., Yu, L., Xiong, K., Chen, J., Zhang, H., Deng, M., & Shi, X. (2024). An energy-efficient H2 production based on urea-aided water splitting enhanced by Ru induced in-situ speciation of NiO nanosheets on porous Ni. Journal of Alloys and Compounds, 983. https://doi.org/10.1016/j.jallcom.2024.173938
Ji, X., Zhang, Y., Ma, Z., & Qiu, Y. (2020). Oxygen Vacancy‐rich Ni/NiO@NC Nanosheets with Schottky Heterointerface for Efficient Urea Oxidation Reaction. ChemSusChem, 13(18), 5004–5014. https://doi.org/10.1002/cssc.202001185
Ke, J., He, F., Wu, H., Lyu, S., Liu, J., Yang, B., Li, Z., Zhang, Q., Chen, J., Lei, L., Hou, Y., & Ostrikov, K. (2021). Nanocarbon-Enhanced 2D Photoelectrodes: A New Paradigm in Photoelectrochemical Water Splitting. Nano-Micro Letters, 13(1), 24. https://doi.org/10.1007/s40820-020-00545-8
Li, J., Zhang, J., & Yang, J.-H. (2022). Research progress and applications of nickel-based catalysts for electrooxidation of urea. International Journal of Hydrogen Energy, 47(12), 7693–7712. https://doi.org/10.1016/j.ijhydene.2021.12.099
Li, L., Soyhan, I., Warszawik, E., & van Rijn, P. (2024). Layered Double Hydroxides: Recent Progress and Promising Perspectives Toward Biomedical Applications. Advanced Science, 11(20). https://doi.org/10.1002/advs.202306035
Liu, Y., Chen, Y., Liang, C., Liang, Z., Fan, C., Wang, F., & Lei, J. (2024). Low-Pt-loading electrocatalyst derived from the reduction of hydrogenated MoO3 for highly efficient hydrogen evolution reaction. International Journal of Hydrogen Energy, 51, 701–708. https://doi.org/10.1016/j.ijhydene.2023.10.179
Li, W., Cheng, G., Peng, S., Sun, M., Wang, S., Han, S., Liu, Y., Zhai, T., & Yu, L. (2022). Tuning hydrogen binding energy by interfacial charge transfer enables pH-universal hydrogen evolution catalysis of metal phosphides. Chemical Engineering Journal, 430, 132699. https://doi.org/10.1016/j.cej.2021.132699
Li, X., Wang, Y., Du, X., & Zhang, X. (2024). Controlled synthesis of X (X = Mo, Cr and W) doped NiCoP nanostructures as efficient and environmentally friendly urea electrolysis catalyst. Fuel, 365. https://doi.org/10.1016/j.fuel.2024.131219
Li, X., Zhao, L., Yu, J., Liu, X., Zhang, X., Liu, H., & Zhou, W. (2020). Water Splitting: From Electrode to Green Energy System. Nano-Micro Letters, 12(1), 131. https://doi.org/10.1007/s40820-020-00469-3
Ma, D., Jia, Y., Li, Y., Yang, H., Wang, F., Zheng, X., Shao, G., Xiong, Q., Shen, Z., Liu, M., Lou, Z., & Gu, C. (2024). Anion modulate the morphological and electronic structure of NiFe-based electrocatalyst for efficient urea oxidation-assisted water electrolysis. Journal of Materials Science and Technology, 197, 207–214. https://doi.org/10.1016/j.jmst.2024.01.054
Masjedi, S. K., Kazemi, A., Moeinnadini, M., Khaki, E., & Olsen, S. I. (2024). Urea production: An absolute environmental sustainability assessment. Science of The Total Environment, 908, 168225. https://doi.org/10.1016/j.scitotenv.2023.168225
Miao, J., Hong, Q. L., Zhang, P., Ren, Z. F., Zhao, A. C., Li, Y. H., Wang, P. F., & Chen, Y. (2024). Self-supported Pt nanoparticles-NiFeP nanosheets arrays nanohybrid with hydrophilic surface towards urea electrolysis. Applied Surface Science, 652. https://doi.org/10.1016/j.apsusc.2023.159276
Moriau, L., Bele, M., Marinko, Ž., Ruiz-Zepeda, F., Koderman Podboršek, G., Šala, M., Šurca, A. K., Kovač, J., Arčon, I., Jovanovič, P., Hodnik, N., & Suhadolnik, L. (2021). Effect of the Morphology of the High-Surface-Area Support on the Performance of the Oxygen-Evolution Reaction for Iridium Nanoparticles. ACS Catalysis, 11(2), 670–681. https://doi.org/10.1021/acscatal.0c04741
Nagappan, S., Yang, S., Adhikari, A., Patel, R., & Kundu, S. (2023). A review on consequences of flexible layered double hydroxide-based electrodes: fabrication and water splitting application. Sustainable Energy & Fuels, 7(16), 3741–3775. https://doi.org/10.1039/D3SE00573A
Niu, H., Wang, Q., Huang, C., Zhang, M., Yan, Y., Liu, T., & Zhou, W. (2023). Noble Metal-Based Heterogeneous Catalysts for Electrochemical Hydrogen Evolution Reaction. Applied Sciences, 13(4), 2177. https://doi.org/10.3390/app13042177
Parvin, S., Aransiola, E., Ammar, M., Lee, S., Zhang, L., Weber, J., & Baltrusaitis, J. (2024). Tailored Ni(OH)2/CuCo/Ni(OH)2 Composite Interfaces for Efficient and Durable Urea Oxidation Reaction. ACS Applied Materials and Interfaces. https://doi.org/10.1021/acsami.4c14041
Patel, K. B., Parmar, B., Ravi, K., Patidar, R., Chaudhari, J. C., Srivastava, D. N., & Bhadu, G. R. (2023). Metal-organic framework derived core-shell nanoparticles as high performance bifunctional electrocatalysts for HER and OER. Applied Surface Science, 616, 156499. https://doi.org/10.1016/j.apsusc.2023.156499
Poimenidis, I. A., Papakosta, N., Klini, A., Farsari, M., Konsolakis, M., Loukakos, P. A., & Moustaizis, S. D. (2023). Electrodeposited Ni foam electrodes for increased hydrogen production in alkaline electrolysis. Fuel, 342, 127798. https://doi.org/10.1016/j.fuel.2023.127798
Putri, L. K., Ng, B.-J., Yeo, R. Y. Z., Ong, W.-J., Mohamed, A. R., & Chai, S.-P. (2023). Engineering nickel phosphides for electrocatalytic hydrogen evolution: A doping perspective. Chemical Engineering Journal, 461, 141845. https://doi.org/10.1016/j.cej.2023.141845
Qian, G., Chen, J., Jiang, W., Yu, T., Tan, K., & Yin, S. (2023). Strong electronic coupling of CoNi and N-doped-carbon for efficient urea-assisted H2 production at a large current density. Carbon Energy, 5(12). https://doi.org/10.1002/cey2.368
Qian, G., Lu, T., Wang, Y., Xu, H., Cao, X., Xie, Z., Chen, C., & Min, D. (2024). N-induced compressive strain in Ni-MoO2 heterostructure with micro-nano array for improving high-current-output urea-assisted water electrolysis performance. Chemical Engineering Journal, 480. https://doi.org/10.1016/j.cej.2023.147993
Qiao, P., Li, G., Xu, X., Wang, D., Wang, F., Xu, L., Lu, L., Cong, H., & Sun, M. (2024). Mediating Self‐Oxidation and Competitive Adsorption for Achieving High‐Selective Urea Oxidation Catalysis at Industrial‐Level Current Densities. Advanced Functional Materials. https://doi.org/10.1002/adfm.202421136
Qu, J., Dong, Y., Zhang, T., Zhao, C., Wei, L., & Guan, X. (2024). Impact of bimetallic synergies on Mo-doping NiFeOOH: Insights into enhanced OER activity and reconstructed electronic structure. Frontiers in Energy, 18(6), 850–862. https://doi.org/10.1007/s11708-024-0960-6
Rahimi, S., Modin, O., & Mijakovic, I. (2020). Technologies for biological removal and recovery of nitrogen from wastewater. Biotechnology Advances, 43, 107570. https://doi.org/10.1016/j.biotechadv.2020.107570
Randall, D. G., Krähenbühl, M., Köpping, I., Larsen, T. A., & Udert, K. M. (2016). A novel approach for stabilizing fresh urine by calcium hydroxide addition. Water Research, 95, 361–369. https://doi.org/10.1016/j.watres.2016.03.007
Ratsoma, M. S., Poho, B. L. O., Makgopa, K., Raju, K., Modibane, K. D., Jafta, C. J., & Oyedotun, K. O. (2023). Application of Nickel Foam in Electrochemical Systems: A Review. Journal of Electronic Materials, 52(4), 2264–2291. https://doi.org/10.1007/s11664-023-10244-w
Sanati, S., Morsali, A., & García, H. (2023). Metal-organic framework-based materials as key components in electrocatalytic oxidation and reduction reactions. Journal of Energy Chemistry, 87, 540–567. https://doi.org/10.1016/j.jechem.2023.08.042
Santos, H. L. S., Corradini, P. G., Medina, M., Dias, J. A., & Mascaro, L. H. (2020). NiMo–NiCu Inexpensive Composite with High Activity for Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 12(15), 17492–17501. https://doi.org/10.1021/acsami.0c00262
Scibioh, M. A., & Viswanathan, B. (2020). Electrolyte materials for supercapacitors. In Materials for Supercapacitor Applications (pp. 205–314). Elsevier. https://doi.org/10.1016/B978-0-12-819858-2.00004-4
Seo, D.-G., Park, D.-H., Park, S.-H., Gu, Y., Lim, D.-M., Hong, C.-E., Han, J.-I., Kim, J.-H., Jang, J.-S., Kim, E.-J., Yun, J.-W., Jo, H.-M., & Park, K.-W. (2025). Optimization of hollow Pt-Ni alloy bifunctional electrocatalysts via ethylene glycol/glycerol ratio in modified polyol process. Journal of Power Sources, 632, 236322. https://doi.org/10.1016/j.jpowsour.2025.236322
Shaarawy, H. H., Hussein, H. S., Attia, A., & Hawash, S. I. (2024). Green hydrogen generation in alkaline solution using electrodeposited Ni-Co-nano-graphene thin film cathode. Environmental Science and Pollution Research, 31(19), 28719–28733. https://doi.org/10.1007/s11356-024-32948-0
Shaban, A., Basiouny, M. E., & AboSiada, O. A. (2024). Comparative study of the removal of urea by electrocoagulation and electrocoagulation combined with chemical coagulation in aqueous effluents. Scientific Reports, 14(1), 30605. https://doi.org/10.1038/s41598-024-81422-x
Su, L., Cui, X., He, T., Zeng, L., Tian, H., Song, Y., Qi, K., & Xia, B. Y. (2019). Surface reconstruction of cobalt phosphide nanosheets by electrochemical activation for enhanced hydrogen evolution in alkaline solution. Chemical Science, 10(7), 2019–2024. https://doi.org/10.1039/C8SC04589E
Svane, S., Sigurdarson, J. J., Finkenwirth, F., Eitinger, T., & Karring, H. (2020). Inhibition of urease activity by different compounds provides insight into the modulation and association of bacterial nickel import and ureolysis. Scientific Reports, 10(1), 8503. https://doi.org/10.1038/s41598-020-65107-9
Tumiwa, J. R., & Mizik, T. (2025). Advancing nickel-based catalysts for enhanced hydrogen production: Innovations in electrolysis and catalyst design. International Journal of Hydrogen Energy, 109, 961–978. https://doi.org/10.1016/j.ijhydene.2025.02.020
Tutar, R., Ceylan, D., & Çelebi-Saltik, B. (2024). Preparation and characterization of conductive and multi-network nanocomposite hydrogels as potential scaffolds for electroactive tissues. New Journal of Chemistry, 48(33), 14736–14745. https://doi.org/10.1039/D4NJ01930J
Urbańczyk, E., Sowa, M., & Simka, W. (2016). Urea removal from aqueous solutions—a review. Journal of Applied Electrochemistry, 46(10), 1011–1029. https://doi.org/10.1007/s10800-016-0993-6
Vij, V., Sultan, S., Harzandi, A. M., Meena, A., Tiwari, J. N., Lee, W.-G., Yoon, T., & Kim, K. S. (2017). Nickel-Based Electrocatalysts for Energy-Related Applications: Oxygen Reduction, Oxygen Evolution, and Hydrogen Evolution Reactions. ACS Catalysis, 7(10), 7196–7225. https://doi.org/10.1021/acscatal.7b01800
Wallnöfer-Ogris, E., Grimmer, I., Ranz, M., Höglinger, M., Kartusch, S., Rauh, J., Macherhammer, M.-G., Grabner, B., & Trattner, A. (2024). A review on understanding and identifying degradation mechanisms in PEM water electrolysis cells: Insights for stack application, development, and research. International Journal of Hydrogen Energy, 65, 381–397. https://doi.org/10.1016/j.ijhydene.2024.04.017
Wang, G., Li, X., Wang, J., Yan, H., Zhang, D., Tian, C., Zhang, H., & Jiao, Y. (2025). Vanadium-Modulated Molybdenum/Nickel-Based Multi-Heterostructures finely tailoring d-Band centers for electrocatalytic water splitting. Journal of Colloid and Interface Science, 137543. https://doi.org/10.1016/j.jcis.2025.137543
Wang, H., Zou, H., Liu, Y., Liu, Z., Sun, W., Lin, K. A., Li, T., & Luo, S. (2021). Ni2P nanocrystals embedded Ni-MOF nanosheets supported on nickel foam as bifunctional electrocatalyst for urea electrolysis. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-00776-8
Wang, Y., Lu, Y., Shi, Y., Wang, J., Zheng, Y., Pan, J., Li, C., & Cao, J. (2023). Realizing highly-efficient urea oxidation via decreasing the energy barrier of deprotonation over regulated electronic structure of Co doped Ni(OH)2. Applied Surface Science, 640. https://doi.org/10.1016/j.apsusc.2023.158391
Weerakoon, D., Bansal, B., Padhye, L. P., Rachmani, A., James Wright, L., Silyn Roberts, G., & Baroutian, S. (2023). A critical review on current urea removal technologies from water: An approach for pollution prevention and resource recovery. Separation and Purification Technology, 314, 123652. https://doi.org/10.1016/j.seppur.2023.123652
Wu, T.-H., Lin, Y.-C., Hou, B.-W., & Liang, W.-Y. (2020). Nanostructured β−NiS Catalyst for Enhanced and Stable Electro−oxidation of Urea. Catalysts, 10(11), 1280. https://doi.org/10.3390/catal10111280
Xiang, R., Yu, Y., Wang, C., & Gao, Q. (2024). Construction of hierarchical CoNiMoOxHy/NF nanostructures for highly efficient urea oxidation reaction. Electrochimica Acta, 479, 143832. https://doi.org/10.1016/j.electacta.2024.143832
Yang, D., Li, J., Li, W., Jiao, Y. Z., & Yang, J. H. (2024). The ultrathin regular circular structural Ni-P nanosheet for efficient urea electrooxidation. Journal of Environmental Chemical Engineering, 12(2). https://doi.org/10.1016/j.jece.2024.112433
Yu, F.-Y., Lang, Z.-L., Yin, L.-Y., Feng, K., Xia, Y.-J., Tan, H.-Q., Zhu, H.-T., Zhong, J., Kang, Z.-H., & Li, Y.-G. (2020). Pt-O bond as an active site superior to Pt0 in hydrogen evolution reaction. Nature Communications, 11(1), 490. https://doi.org/10.1038/s41467-019-14274-z
Yun, W. H., Das, G., Kim, B., Park, B. J., Yoon, H. H., & Yoon, Y. S. (2021). Ni–Fe phosphide deposited carbon felt as free-standing bifunctional catalyst electrode for urea electrolysis. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-01383-3
Zhao, Q., Meng, C., Kong, D., Wang, Y., Hu, H., Chen, X., Han, Y., Chen, X., Zhou, Y., Lin, M., & Wu, M. (2021). In Situ Construction of Nickel Sulfide Nano-Heterostructures for Highly Efficient Overall Urea Electrolysis. ACS Sustainable Chemistry & Engineering, 9(46), 15582–15590. https://doi.org/10.1021/acssuschemeng.1c05722
Zhao, Y., Zhou, P., Li, Z., Zhao, B., Jiang, W., Chen, X., Wang, J., Yang, R., & Zuo, C. (2024). Interfacial engineering of hierarchical MoNi4/NiO heterostructure nanosheet arrays as bifunctional electrocatalysts for urea-assisted energy-saving hydrogen production. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 681. https://doi.org/10.1016/j.colsurfa.2023.132776
Zhong, M., Li, W., Wang, C., & Lu, X. (2022). Synthesis of hierarchical nickel sulfide nanotubes for highly efficient electrocatalytic urea oxidation. Applied Surface Science, 575. https://doi.org/10.1016/j.apsusc.2021.151708
Zhou, Y., Zhu, Y., Zhu, J., Li, C., & Chen, G. (2023). A Comprehensive Review on Wastewater Nitrogen Removal and Its Recovery Processes. International Journal of Environmental Research and Public Health, 20(4), 3429. https://doi.org/10.3390/ijerph20043429
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Walisongo Journal of Chemistry

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The copyright of the received article shall be assigned to the publisher of the journal. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to published articles.
In line with the license, authors and any users (readers and other researchers) are allowed to share and adapt the material. In addition, the material must be given appropriate credit, provided with a link to the license, and indicated if changes were made. If authors remix, transform or build upon the material, authors must distribute their contributions under the same license as the original.


