UTILIZATION OF BAGASSE ASH FOR THE PREPARATION OF SILICA AEROGEL/MgO COMPOSITES THROUGH AMBIENT-PRESSURE DRYING

Authors

  • Istighfarin Meilidya Azhar Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Indonesia
  • Nazriati Nazriati Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Indonesia
  • Irma Kartika Kusumaningrum Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Indonesia

DOI:

https://doi.org/10.21580/wjc.v8i2.27564

Keywords:

silica aerogel, MgO, Composite, Bagasse ash

Abstract

This study presents the preparation of silica aerogel/MgO composites using bagasse ash as a silica source and MgCl₂·6H₂O as the MgO precursor. Sodium silicate was extracted from bagasse ash and converted into silicic acid through ion-exchange treatment. Silica aerogel formation was achieved through gelation, followed by surface modification using TMCS and HMDS. Magnesium oxide was incorporated via co-precipitation with MgCl₂·6H₂O and subsequently stabilized through calcination. The composites were characterized using FTIR, XRD, and BET–BJH analyses. XRD results revealed a hybrid amorphous–crystalline structure, with silica predominantly in the amorphous phase and MgO in the crystalline phase. BET analysis showed a pore volume of 0.50 cm³/g and a specific surface area of 121.99 m²/g, while the pore-size distribution confirmed its mesoporous nature. FTIR spectra indicated the presence of functional groups corresponding to Si–O–Si, Si–C, C–H, and Mg–O, confirming the successful integration of MgO into the silica aerogel framework. These findings demonstrate the successful preparation of silica aerogel/MgO composites from bagasse ash under ambient-pressure drying conditions.

Downloads

Download data is not yet available.

Author Biographies

Istighfarin Meilidya Azhar, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang

Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang

Nazriati Nazriati, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang

Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang

Irma Kartika Kusumaningrum, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang

Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang

References

[1] Rao, A. P., Rao, A. V., & Pajonk, G. M. 2007. Hydrophobic and Physical Properties of the Ambient Pressure Dried Silica Aerogels with Sodium Silicate Precursor using Various Surface Modification Agents. Applied Surface Science, 253(14). https://doi.org/10.1016/j.apsusc.2006.12.117

[2] Lee, S., Cha, Y. C., Hwang, H. J., Moon, J. W., & Han, I. S. 2007. The Effect of pH on the Physicochemical Properties of Silica Aerogels Prepared by An Ambient Pressure Drying Method. Materials Letters, 61(14–15). https://doi.org/10.1016/j.matlet.2006.11.010

[3] Bhagat, S. D., Kim, Y. H., Suh, K. H., Ahn, Y. S., Yeo, J. G., & Han, J. H. 2008. Superhydrophobic Silica Aerogel Powders with Simultaneous Surface Modification, Solvent Exchange and Sodium Ion Removal from Hydrogels. Microporous and Mesoporous Materials, 112(1–3). https://doi.org/10.1016/j.micromeso.2007.10.030

[4] Nazriati, N., Setyawan, H., Affandi, S., Yuwana, M., & Winardi, S. 2014. Using Bagasse Ash as a Silica Source when Preparing Silica Aerogels Via Ambient Pressure Drying. Journal of Non-Crystalline Solids, 400, 6–11. https://doi.org/10.1016/j.jnoncrysol.2014.04.027

[5] Rahayu, W., Muthomimah, S., Sumari, S., & Nazriati, N. 2020. Effect of Sonication Time on Characteristics of Synthesized Silica Aerogel Activated Carbon Nanocomposite Based on Bagasse Ash. IOP Conference Series: Materials Science and Engineering, 833(1). https://doi.org/10.1088/1757-899X/833/1/012088

[6] Huynh, J., Palacio, R., Allavena, A., Gallard, H., Descostes, M., Mamède, A. S., Royer, S., Tertre, E., & Batonneau-Gener, I. 2021. Selective Adsorption of U(VI) from Real Mine Water using an NH2-Functionalized Silica Packed Column. Chemical Engineering Journal, 405. https://doi.org/10.1016/j.cej.2020.126912

[7] Pierre, A. C., & Pajonk, G. M. 2002. Chemistry of aerogels and their applications. Chemical Reviews, 102(11), 4243–4265. https://doi.org/10.1021/cr0101306

[8] Wang, M., Jiao, Y., Li, N., & Su, Y. 2023. Synthesis of A SiO2-MgO Composite Material Derived from Yellow Phosphorus Slag with Excellent Malachite Green Adsorption Activity. Elsevier Ltd. Journal of Alloys and Compounds, Vol. 969. https://doi.org/10.1016/j.jallcom.2023.172344

[9] Gui, C. X., Li, Q. J., Lv, L. L., Qu, J., Wang, Q. Q., Hao, S. M., & Yu, Z. Z. 2015. Core-Shell Structured MgO@Mesoporous Silica Spheres for Enhanced Adsorption of Methylene Blue and Lead Ions. RSC Advances, 5(26), 20440–20445. https://doi.org/10.1039/c5ra02596f

[10] D. Nur’aeni, E. P. Hadisantoso, and D. Suhendar. 2019. Adsorpsi Ion Logam Mn2+ dan Cu2+ oleh Silika Gel dari Abu Ampas Tebu. Al-Kimiya, vol. 4, no. 2, pp. 70–80. https://doi.org/10.15575/ak.v4i2.5087

[11] Akkaya, B., Aslan, J., Taşdemir, R., Erdem, İ., & Gönen, M. 2024. Colloidal Silica Production with Resin from Sodium Silicate and Optimization of Process. Open Journal of Nano, 9(1), 1-10. https://doi.org/10.56171/ojn.1402531

[12] Halim, Z. A. A., Awang, N., Ahmad, N., & Yajid, M. A. M. 2024. Effects of Silane Concentration on Hydrophobic Conversion of Rice Husk-Derived Silica Aerogels Prepared by Supercritical Drying. Biomass Conversion and Biorefinery, 14(14), 15811-15821. https://doi.org/10.1007/s13399-022-03710-8

[13] Veselova, V. O., Kottsov, S. Y., Golodukhina, S. V., Khvoshchevskaya, D. A., & Gajtko, O. M. 2024. Hydrophilic and Hydrophobic: Modified GeO2 Aerogels by Ambient Pressure Drying. Nanomaterials, 14(18), 1511. https://doi.org/10.3390/nano14181511

[14] Pei, Y., Wang, M., Tian, D., Xu, X., & Yuan, L. 2015. Synthesis of Core–Shell SiO2@MgO with Flower Like Morphology for Removal of Crystal Violet in Water. Journal of colloid and interface science, 453, 194-201. https://doi.org/10.1016/j.jcis.2015.05.003

[15] Musić, S., Filipović-Vinceković, N., & Sekovanić, L. 2011. Precipitation of Amorphous SiO2 Particles and Their Properties. Brazilian Journal of Chemical Engineering, 28, 89-94. https://doi.org/10.1590/S0104-66322011000100011

[16] Huang, H., Guo, H., Qu, J., & Feng, Y. 2020. Aging mechanism and surface properties of Silica fluoropolymer coating and its application. Materials Research Express, 7(11), 116409. https://doi.org/10.1088/2053-1591/abc999

[17] Selvam, N. C. S., Kumar, R. T., Kennedy, L. J., & Vijaya, J. J. 2011. Comparative Study of Microwave and Conventional Methods for The Preparation and Optical Properties of Novel MgO-Micro and Nano-Structures. Journal of Alloys and Compounds, 509(41), 9809-9815. https://doi.org/10.1016/j.jallcom.2011.08.032

Downloads

Published

2025-12-17

How to Cite

Azhar, I. M., Nazriati, N., & Kusumaningrum, I. K. (2025). UTILIZATION OF BAGASSE ASH FOR THE PREPARATION OF SILICA AEROGEL/MgO COMPOSITES THROUGH AMBIENT-PRESSURE DRYING. Walisongo Journal of Chemistry, 8(2), 251–258. https://doi.org/10.21580/wjc.v8i2.27564