MOLECULAR DOCKING AND DYNAMICS OF BIOACTIVE COMPOUNDS DERIVED FROM Sauropus androgynus AS CYCLOOXYGENASE-2 INHIBITORS
DOI:
https://doi.org/10.21580/wjc.v8i2.28912Keywords:
Bioactive compounds, Sauropus androgynus, anti-inflammatory, molecular docking, molecular dynamicsAbstract
Inflammation is a biological response to injury that can become chronic and lead to various immunological disorders in humans. Bioactive compounds in Sauropus androgynus exhibit a broad spectrum of biological activity, including anti-inflammatory effects. This study employed a computational approach involving Lipinski’s Rule of Five, protein network analysis, molecular docking, ADMET prediction, molecular dynamics simulations, and Density Functional Theory (DFT) calculations for electronic structure elucidation. Among the tested compounds, corchoionoside C and afzelin demonstrated the strongest inhibitory potential against the COX-2 enzyme, with binding energies of −9.57 and −9.14 kcal/mol, respectively. Molecular dynamics simulations showed that the S. androgynus bioactive compound–COX-2 complexes exhibited minimal fluctuation and remained highly stable throughout the simulation, supporting their potential biological activity. DFT HOMO–LUMO analysis further indicated the capability of corchoionoside C and afzelin to interact with biological targets such as COX-2 through polar or electrostatic interactions. These findings are expected to provide a scientific foundation for the development of novel anti-inflammatory agents with promising pharmacological profiles and reduced adverse effects.
Downloads
References
Abedin, M. M., Pal, T. K., Chanmiya Sheikh, M., & Alam, M. A. (2024). Investigation on synthesized sulfonamide Schiff base with DFT approaches and in silico pharmacokinetic studies: Topological, NBO, and NLO analyses. Heliyon, 10(14), e34499. https://doi.org/10.1016/j.heliyon.2024.e34499
Akbari, Z., Stagno, C., Iraci, N., Efferth, T., Omer, E. A., Piperno, A., Montazerozohori, M., Feizi-dehnayebi, M., & Micale, N. (2024). Biological evaluation , DFT , MEP , HOMO-LUMO analysis and ensemble docking studies of Zn ( II ) complexes of bidentate and tetradentate Schiff base ligands as antileukemia agents. Journal of Molecular Structure, 1301(December 2023), 137400. https://doi.org/10.1016/j.molstruc.2023.137400
Ananda, A. N., Triawanti, T., Setiawan, B., Makati, A. C., Putri, J. A., & Raharjo, S. J. (2024). In silico study of the flavonoid compound of Sauropus androgynus leaves ON RNA-Dependent RNA polymerase (RdRp) SARS-CoV-2. Aspects of Molecular Medicine, 3(128), 100032. https://doi.org/10.1016/j.amolm.2023.100032
Ariefin, M., & Alfanaar, R. (2023). Molecular Modelling Based on TD-DFT Applied to UV Spectra of Coumarin Derivatives. Walisongo Journal of Chemistry, 6(1), 61–68. https://doi.org/10.21580/wjc.v6i1.15696
Awaludin, Kartina, Maulianawati, D., Manalu, W., Andriyanto, Septiana, R., Arfandi, A., & Lalang, Y. (2020). Phytochemical screening and toxicity of ethanol extract of Sauropus androgynus. Biodiversitas, 21(7), 2966–2970. https://doi.org/10.13057/biodiv/d210712
Azimi, F., Ghasemi, J. B., Azizian, H., Najafi, M., Faramarzi, M. A., Saghaei, L., Sadeghi-aliabadi, H., Larijani, B., Hassanzadeh, F., & Mahdavi, M. (2021). Design and synthesis of novel pyrazole-phenyl semicarbazone derivatives as potential α-glucosidase inhibitor: Kinetics and molecular dynamics simulation study. International Journal of Biological Macromolecules, 166, 1082–1095. https://doi.org/10.1016/j.ijbiomac.2020.10.263
Bakti, A. B., & Martoprawiro, M. A. (2024). Computational Study of The Effect of Structure on Antioxidant Activity and Drug Score of Coumarin Derivatives. Walisongo Journal of Chemistry, 7(2), 181–192. https://doi.org/10.21580/wjc.v7i2.23327
Bommu, U. D., Konidala, K. K., Pamanji, R., & Yeguvapalli, S. (2017). Structural probing, screening and structure-based drug repositioning insights into the identification of potential Cox-2 inhibitors from selective coxibs. Interdisciplinary Sciences: Computational Life Sciences, 11(2), 153-169.
Case, D. A., et al. (2016). AMBER 2016. San Fransisco.
Chandwe, K., & Kelly, P. (2021). Colostrum therapy for human gastrointestinal health and disease. Nutrients, 13(6), 1–14. https://doi.org/10.3390/nu13061956
Dassault Systemes. (2019). Biovia Discovery Studio Visualizer. San Diego.
Dawidowicz, M., Kula, A., Świętochowski, P., & Ostrowska, Z. (2020). Assessment of the impact of PTGS1 , PTGS2 and CYP2C9 polymorphisms on pain , effectiveness and safety of NSAID therapies Ocena wpływu polimorfizmów PTGS1 , PTGS2 i CYP2C9 na ból , skuteczność i bezpieczeństwo terapii NLPZ. 504–516.
Elalouf, A., Rosenfeld, A. Y., & Maoz, H. (2024). Targeting serotonin receptors with phytochemicals – an in-silico study. Scientific Reports, 14(1), 1–22. https://doi.org/10.1038/s41598-024-76329-6
Fikri, F., & Purnama, M. T. E. (2020). Pharmacology and phytochemistry overview on sauropus androgynous. Systematic Reviews in Pharmacy, 11(6), 124–128. https://doi.org/10.31838/srp.2020.6.20
Gayathiri, E., Prakash, P., Ahamed, M., Pandiaraj, S., Venkidasamy, B., Dayalan, H., Thangaraj, P., Selvam, K., Chaudhari, S. Y., Govindasamy, R., & Thiruvengadam, M. (2024). Multitargeted pharmacokinetics, molecular docking and network pharmacology-based identification of effective phytocompounds from Sauropus androgynus (L.) Merr for inflammation and cancer treatment. Journal of Biomolecular Structure and Dynamics, 42(15), 7883–7896. https://doi.org/10.1080/07391102.2023.2243335
Ghahremanian, S., Rashidi, M. M., Raeisi, K., & Toghraie, D. (2022). Molecular dynamics simulation approach for discovering potential inhibitors against SARS-CoV-2: A structural review. Journal of Molecular Liquids, 354, 118901. https://doi.org/10.1016/j.molliq.2022.118901
Harshitha, B. T., Jayashankar, J., Anand, A. P., Sandeep, S., Jayanth, H. S., Karthik, C. S., Mallu, P., Haraprasad, N., & Krishnamurthy, N. B. (2022). Structural and Functional Insights of Thiazole Derivatives as Potential Anti-inflammatory Candidate: A New Contender on Chronic and Acute SARS-CoV-2 Inflammation and Inhibition of SARS-CoV-2 Proteins. Asian Journal of Chemistry, 34(8), 1893–1920. https://doi.org/10.14233/ajchem.2022.23673
Hikmawanti, N, P, E., Hayati, & Andriyani, Y. (2021). Total Flavonoid Content in Hydro-ethanolic Extract of Sauropus androgynus (L.) Merr Leaves from Three Regions with Different Altitude. Jurnal Jamu Indonesia, 6(2), 61–67. https://doi.org/10.29244/jji.v6i2.195
Hong, J. Y., Choi, Y. H., Roh, Y. J., Lee, M. K., Zouboulis, C. C., & Park, K. Y. (2025). Effect of afzelin on inflammation and lipogenesis in particulate matter-stimulated C. acnes-treated SZ95 sebocytes. Frontiers in Medicine, 12. https://doi.org/10.3389/fmed.2025.1518382
Isravel, A. D., Jeyaraj, J. K., Thangasamy, S., & John, W. J. (2021). DFT, NBO, HOMO-LUMO, NCI, stability, Fukui function and hole – Electron analyses of tolcapone. Computational and Theoretical Chemistry, 1202(May), 113296. https://doi.org/10.1016/j.comptc.2021.113296
Jantarawong, S., Wathanaphanit, P., Panichayupakaranant, P., & Pengjam, Y. (2025). Prediction of ADMET profile and anti-inflammatory potential of chamuangone. Scientific Reports, 15(1), 1–15. https://doi.org/10.1038/s41598-025-86809-y
Ju, Z., Li, M., Xu, J., Howell, D. C., Li, Z., & Chen, F. E. (2022). Recent development on COX-2 inhibitors as promising anti-inflammatory agents: The past 10 years. Acta Pharmaceutica Sinica B, 12(6), 2790–2807. https://doi.org/10.1016/j.apsb.2022.01.002
Khalipa, A. B. R., Bhuia, M., Mondal, M., Hossain, M. S., Sakib, M. R., Prottay, A. S., Rahman, N., Rabbani, G., & Akter, K. (2021). in-Silico Molecular Docking Study of Afzelin and Its Derivatives Against 6M0J for Treatment of Covid-19. International Journal of Evergreen Scientific Research Research Paper, 03,62-77
Knizia, G. (2013). Intrinsic atomic orbitals: An unbiased bridge between quantum theory and chemical concepts. Journal of Chemical Theory and Computation, 9(11), 4834–4843. https://doi.org/10.1021/ct400687b
Kuhn, M., Mering, C. Von, Campillos, M., & Jensen, L. J. (2008). STITCH : interaction networks of chemicals and proteins. 36(December 2007), 684–688. https://doi.org/10.1093/nar/gkm795
Land, Henrik, and M. S. H. (2017). YASARA: a tool to obtain structural guidance in biocatalytic investigations." Protein engineering: methods and protocols.
Lee, S. Y., Cho, S. S., Li, Y. C., Bae, C. S., Park, K. M., & Park, D. H. (2020). Anti-inflammatory Effect of Curcuma longa and Allium hookeri Co-treatment via NF-κB and COX-2 Pathways. Scientific Reports, 10(1), 1–11. https://doi.org/10.1038/s41598-020-62749-7
Lim, H. J., Prajapati, R., Seong, S. H., Jung, H. A., & Choi, J. S. (2023). Antioxidant and Antineuroinflammatory Mechanisms of Kaempferol-3-O-β-d-Glucuronate on Lipopolysaccharide-Stimulated BV2 Microglial Cells through the Nrf2/HO-1 Signaling Cascade and MAPK/NF-κB Pathway. ACS Omega, 8(7), 6538–6549. https://doi.org/10.1021/acsomega.2c06916
Lipinski, C. A. (2004). Lead- and drug-like compounds: The rule-of-five revolution. Drug Discovery Today: Technologies, 1(4), 337–341. https://doi.org/10.1016/j.ddtec.2004.11.007
Mashkani, Z. S., Yali, Z. P., Dorgalaleh, A., & Shams, M. (2023). Evaluating the Potential Blood Coagulant Activity of Caenothus american us Compounds: Computational Analysis using Docking, Physicochemical, and ADMET Studies. 1–47. http://biorxiv.org/lookup/doi/10.1101/2023.09.05.555050
McEvoy, L., Carr, D. F., & Pirmohamed, M. (2021). Pharmacogenomics of NSAID-Induced Upper Gastrointestinal Toxicity. Frontiers in Pharmacology, 12(June), 1–15. https://doi.org/10.3389/fphar.2021.684162
Mirza, F. J., Zahid, S., Amber, S., Sumera, S., Jabeen, H., Asim, N., & Ali Shah, S. A. (2022). Multitargeted Molecular Docking and Dynamic Simulation Studies of Bioactive Compounds from Rosmarinus officinalis against Alzheimer’s Disease. Molecules, 27(21), 1–18. https://doi.org/10.3390/molecules27217241
Morris, G. M., & Lim-Wilby, M. (2008). Molecular docking. In Methods in Molecular Biology (Vol. 443, pp. 365–382). https://doi.org/10.1007/978-1-59745-177-2_19
Neese, F., Wennmohs, F., Becker, U., & Riplinger, C. (2020). The ORCA quantum chemistry program package. Journal of Chemical Physics, 152(22). https://doi.org/10.1063/5.0004608
Noureddine, O., Issaoui, N., Gatfaoui, S., Al-Dossary, O., & Marouani, H. (2021). Quantum chemical calculations, spectroscopic properties and molecular docking studies of a novel piperazine derivative. Journal of King Saud University - Science, 33(2), 101283. https://doi.org/10.1016/j.jksus.2020.101283
Orlando, B. J., & Malkowski, M. G. (2016). Substrate-selective inhibition of cyclooxygeanse-2 by fenamic acid derivatives is dependent on peroxide tone. Journal of Biological Chemistry, 291(29), 15069–15081. https://doi.org/10.1074/jbc.M116.725713
Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera - A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
Puthanveedu, V., & Muraleedharan, K. (2022). Phytochemicals as potential inhibitors for COVID-19 revealed by molecular docking, molecular dynamic simulation and DFT studies. Structural Chemistry, 33(5), 1423–1443. https://doi.org/10.1007/s11224-022-01982-4
Rahman, M. M., Junaid, M., Zahid Hosen, S. M., Mostafa, M., Liu, L., & Benkendorff, K. (2021). Mollusc-derived brominated indoles for the selective inhibition of cyclooxygenase: A computational expedition. Molecules, 26(21). https://doi.org/10.3390/molecules26216538
Shivaleela, B., Shivraj, G. G., & Hanagodimath, S. M. (2023). Estimation of dipole moments by Solvatochromic shift method, spectroscopic analysis of UV–Visible, HOMO-LUMO, ESP map, Mulliken atomic charges, NBO and NLO properties of benzofuran derivative. Results in Chemistry, 6(July), 101046. https://doi.org/10.1016/j.rechem.2023.101046
Shivanika, C., Deepak Kumar, S., Ragunathan, V., Tiwari, P., Sumitha, A., & Brindha Devi, P. (2022). Molecular docking, validation, dynamics simulations, and pharmacokinetic prediction of natural compounds against the SARS-CoV-2 main-protease. Journal of Biomolecular Structure and Dynamics, 40(2), 585–611. https://doi.org/10.1080/07391102.2020.1815584
Sinha, S, B., & Wang, T. and S. M. (2022). Applications of molecular dynamics simulation in nanomedicine. Membranes, 397–405. https://doi.org/10.1016/B978-0-12-818627-5.00007-5
Siswina, T., Rustama, M. M., Sumiarsa, D., Apriyanti, E., Dohi, H., & Kurnia, D. (2023). Antifungal Constituents of Piper crocatum and Their Activities as Ergosterol Biosynthesis Inhibitors Discovered via In Silico Study Using ADMET and Drug-Likeness Analysis. Molecules, 28(23). https://doi.org/10.3390/molecules28237705
Smith, W. L., & Malkowski, M. G. (2019). Interactions of fatty acids, nonsteroidal anti-inflammatory drugs, and coxibs with the catalytic and allosteric subunits of cyclooxygenases-1 and -2. Journal of Biological Chemistry, 294(5), 1697–1705. https://doi.org/10.1074/jbc.TM118.006295
Sohrab, S. S., & Kamal, M. A. (2022). Screening, Docking, and Molecular Dynamics Study of Natural Compounds as an Anti-HER2 for the Management of Breast Cancer. Life, 12(11). https://doi.org/10.3390/life12111729
Tai, F. W. D., & McAlindon, M. E. (2021). Non-steroidal anti-inflammatory drugs and the gastrointestinal tract. Clinical Medicine, Journal of the Royal College of Physicians of London, 21(2), 131–134. https://doi.org/10.7861/CLINMED.2021-0039
Thapa, S., Biradar, M. S., Nargund, S. L., Ahmad, I., Agrawal, M., Patel, H., & Lamsal, A. (2024). Synthesis, Molecular Docking, Molecular Dynamic Simulation Studies, and Antitubercular Activity Evaluation of Substituted Benzimidazole Derivatives. Advances in Pharmacological and Pharmaceutical Sciences, 2024. https://doi.org/10.1155/2024/9986613
Trabalzini, L. (2020). Progression and Immunity. 1–26.
Ur Rashid H, Xu Y, Ahmad N, Muhammad Y, Wang L (2019) Promising anti-inflammatory effects of chalcones via inhibition of cyclooxygenase, prostaglandin E2, inducible NO synthase and nuclear factor κb activities. Bioorg Chem 87:335–365. https://doi.org/10.1016/j.bioorg.2019.03.033
Üst, Ö., Yalçin, E., Çavuşoğlu, K., & Özkan, B. (2024). LC–MS/MS, GC–MS and molecular docking analysis for phytochemical fingerprint and bioactivity of Beta vulgaris L. Scientific Reports, 14(1), 1–17. https://doi.org/10.1038/s41598-024-58338-7
Utami, W., Apriyanto, Antari, L., Rasyid, H., & Fitriani, I. N. (2024). Inhibition of Human Acetylcholinesterase (4EY7) using Bioactive Compound from Moringa oleifera: Molecular Docking and Dynamic Studies. Jurnal Kimia Valensi, 10(2), 290–303. https://doi.org/10.15408/jkv.v10i2.39840
Utami, W., Aziz, H. A., Fitriani, I. N., Zikri, A. T., Mayasri, A., & Nasrudin, D. (2020). In silico anti-inflammatory activity evaluation of some bioactive compound from ficus religiosa through molecular docking approach. Journal of Physics: Conference Series, 1563(1). https://doi.org/10.1088/1742-6596/1563/1/012024
Veligeti, R., Madhu, R. B., Anireddy, J., Pasupuleti, V. R., Avula, V. K. R., Ethiraj, K. S., Uppalanchi, S., Kasturi, S., Perumal, Y., Anantaraju, H. S., Polkam, N., Guda, M. R., Vallela, S., & Zyryanov, G. V. (2020). Synthesis of novel cytotoxic tetracyclic acridone derivatives and study of their molecular docking, ADMET, QSAR, bioactivity and protein binding properties. Scientific Reports, 10(1), 1–22. https://doi.org/10.1038/s41598-020-77590-1
Xia, F., Li, B., Song, K., Wang, Y., Hou, Z., Li, H., Zhang, X., Li, F., & Yang, L. (2024). Polyploid Genome Assembly Provides Insights into Morphological Development and Ascorbic Acid Accumulation of Sauropus androgynus. International Journal of Molecular Sciences, 25(1), 1–18. https://doi.org/10.3390/ijms25010300
Yucel, Turan, N., Al, A., Asfour, R., Evrim, A., Kandemir, Ü., Ozkay, Ü. D., Can, D., & Yurttas, L. (2024). Bioorganic Chemistry Design and synthesis of novel dithiazole carboxylic acid Derivatives : In vivo and in silico investigation of their Anti-Inflammatory and analgesic effects. 144(December 2023). https://doi.org/10.1016/j.bioorg.2024.107120
Zhang, J., Zhu, W., Zhu, W., Yang, P. P., Xu, J., Manosroi, J., Kikuchi, T., Abe, M., Akihisa, T., Feng, F., Chemistry, N. M., Materials, B. F., Mai, C., Sciences, P., & Merr, L. (n.d.). Article Type: Full Paper Melanogenesis-inhibitory and cytotoxic activities of chemical constituents from the leaves of. https://doi.org/10.1111/ijlh.12426
Zhou, Y., Khan, H., Xiao, J., & Cheang, W. S. (2021). Effects of arachidonic acid metabolites on cardiovascular health and disease. International Journal of Molecular Sciences, 22(21). https://doi.org/10.3390/ijms222112029
Zrieq, R., Ahmad, I., Snoussi, M., Noumi, E., Iriti, M., Algahtani, F. D., Patel, H., Saeed, M., Tasleem, M., Sulaiman, S., Aouadi, K., & Kadri, A. (2021). Tomatidine and patchouli alcohol as inhibitors of SARS-CoV-2 enzymes (3CLpro, PLpro and NSP15) by molecular docking and molecular dynamics simulations. International Journal of Molecular Sciences, 22(19). https://doi.org/10.3390/ijms221910693
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Walisongo Journal of Chemistry

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The copyright of the received article shall be assigned to the publisher of the journal. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to published articles.
In line with the license, authors and any users (readers and other researchers) are allowed to share and adapt the material. In addition, the material must be given appropriate credit, provided with a link to the license, and indicated if changes were made. If authors remix, transform or build upon the material, authors must distribute their contributions under the same license as the original.


